ST. JOSEPH'S COLLEGE (AUTONOMOUS), DEVAGIRI, CALICUT

Syllabus
for

M.Sc. MATHEMATICS PROGRAMME

Under
CHOICE BASED CREDIT SEMESTER SYSTEM-PG-2019
(With effect from 2019 admission onwards)
Total Credits: 80

SEMESTER 1

Course Code	Title of the Course	No. of credits	Work Load Hrs/ Week	Core/Audit Course
FMTH1C01	Abstract Algebra	4	5	core
FMTH1C02	Linear Algebra	4	5	core
FMTH1C03	Real Analysis I	4	5	core
FMTH1C04	Discrete Mathematics	4	5	core
FMTH1C05	Number Theory	4	5	core
FMTH1V01	Viva Voce	1		core
FMTH1A01	Ability Enhancement Course	4	0	Audit Course

SEMESTER 2

Course Code	Title of the Course	No. of credits	Work Load Hrs/ Week	Core/ Audit Course
FMTH2C06	Galois theory	4	5	core
FMTH2C07	Real Analysis II	4	5	core
FMTH2C08	Topology	4	5	core
FMTH2C09	ODE \& calculus of variations	4	5	core
FMTH2C10	Operations Research	4	5	core
FMTH2V02	Viva Voce	1		core
FMTH2A02	Professional Competency Course	4	0	Audit Course

SEMESTER 3

Course Code	Title of the Course	No. of credits	Work Load Hrs/ Week	Core/ Elective
FMTH3C11	 Geometry	4	5	core
FMTH3C12	Complex Analysis	4	5	core
FMTH3C13	Functional Analysis	4	5	core
FMTH3C14	PDE \& Integral Equations	4	5	core
	Elective I*	3	5	Elec.
FMTH3V03	Viva Voce	1		core

SEMESTER 4

Course Code	Title of the Course	No. of credits	Work Load Hrs/Week	Core/ Elective
FMTH4C15	Advanced Functional Analysis	4	5	core
	Elective II $* *$	3	5	Elec.
	Elective III $* *$	3	5	Elec.
	Elective IV $* *$	3	5	Elec.
FMTH4P01	Project	4	5	core
FMTH4V04	Viva Voce	1		core

[^0]
List of Elective Courses in Third Semester

1. FMTH3E01: Coding theory
2. FMTH3E02: Cryptography
3. FMTH3E03: Measure \& Integration
4. FMTH3E04: Probability Theory
5. FMTH3E05: Graph Theory

List of Elective Courses in Fourth Semester

1. FMTH4E06: Advanced Complex Analysis
2. FMTH4E07: Algebraic Number Theory
3. FMTH4E08: Algebraic Topology
4. FMTH4E09: Commutative Algebra
5. FMTH4E10: Differential Geometry
6. FMTH4E11: Fluid Dynamics
7. FMTH4E12: Computer Oriented Numerical Analysis
8. FMTH4E13: Representation Theory
9. FMTH4E14: Wavelet Theory
10. FMTH4E15: Fourier Analysis

ABILITY ENHANCEMENT COURSE (AEC)

Successful fulfillment of any one of the following shall be considered as the completion of AEC.
(i) Internship, (ii) Class room seminar presentation, (iii) Publications, (iv) Case study analysis,
(v) Paper presentation, (vi) Book reviews. A student can select any oneof these as AEC.

Internship: Internship of duration 5 days under the guidance of a faculty in an institution/department other than the parent department. A certificate of the same should be obtained and submitted to the parent department.

Class room seminar: One seminar of duration one hour based on topics in mathematicsbeyond the prescribed syllabus.

Publications: One paper published in conference proceedings/ Journals. A copy of the same should be submitted to the parent department.

Case study analysis: Report of the case study should be submitted to the parentdepartment.
Paper presentation: Presentation of a paper in a regional/ national/ international seminar/conference. A copy of the certificate of presentation should be submitted to the parent department.

Book Reviews: Review of a book. Report of the review should be submitted to the parent department.

PROFESSIONAL COMPETENCY COURSE (PCC)

A student can select any one of the following as Professional Competency course:

1. Technical writing with $L^{A} T_{E} X$.
2. Scientific Programming with Scilab.
3. Scientific Programming with Python.

PROJECT

The Project Report (Dissertation) should be self contained. It should contain table of contents, introduction, at least three chapters, bibliography and index. The main content may be of length not less than 30 pages in the A4 format with one and half line spacing. The project report should be prepared preferably in $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. There must be a project presentation by the student followed by a viva voce. The components and weightage of External and Internal valuation of the Project are as follows:

Components	External (weightage)	Internal (weightage)
Relevance of the topic \& statement of problem	6	1
Methodology \& analysis	6	1
Quality of Report \& Presentation	6	1
Viva Voce	12	2
Total weightage	30	5

The external project evaluation shall be done by a Board consisting one External Examiner. The Grade Sheet is to be consolidated and must be signed by the External Examiner.

VIVA VOCE EXAMINATIONS

The Comprehensive Viva Voce is to be conducted by a Board consisting of one External Examiner in each semester with 1 credit each. Total weightage of each viva voce is 30 .

QUESTION PAPER PATTERN FOR THE WRITTEN EXAMINATIONS

For each course (except FMTH4E12 Computer Oriented Numerical Analysis)

there will be an external examination of duration 3 hours. The valuation will be done by Direct Grading System. Each question paper will consist of 8 short answer questions each of weightage 1, 9 paragraph type questions each of weightage 2 , and 4 essay type questions each of weightage 5 . All short answer questions are to be answered while 6 paragraph type questions and 2 essay type questions are to be answered with a total weightage of 30 . The questions are to be evenly distributed over the entire syllabus (see the model question paper). More specifically, each question paper consists of three partsviz Part A, Part B and Part C. Part A will consist of 8 short answer type questions each of weightage 1 of which at least 2 questions should be from each unit. Part B has 3 unitsbased on the 3 modules of each course. From each module there will be three questions of which two should be answered. Part C will consist of four essay type questions each of weightage 5 of which 2 should be answered. These questions should cover the entire syllabus of the course.

Question Paper Pattern for the written examination of the Elective Course: FMTH4E12

Computer Oriental Numerical Analysis

For the Elective Course FMTH4E12: Computer Oriental Numerical Analysis there will be a theory written examination and a practical examination each of duration one and halfhours. The valuation will be done by Direct Grading System.

The written examination question paper will consist of 4 short answer questionseach of weightage 1,6 paragraph type questions each of weightage 2 , and 2 essay type questions each of weightage 5 . All short answer questions are to be answered while 3 paragraph type questions and 1 essay type question are to be answered with a total weightage of 15 . The questions are to be evenly distributed over the entire syllabus (see the model question paper). More specifically, question paper consists of three parts viz Part A, Part B and Part C. Part A will consist of 4 short answer type questions each of weightage 1 of which at least 1 question should be from each unit. Part B has 3 units based on the 3 modules. From each module there will be 2 questions of which 1 should be answered. Part C will consist of 2 essay type questions each of weightage 5 of which 1 should be answered. These questions should cover the entire syllabus of the course.

PRACTICAL

Equal weightage to be given for methods and programming. A candidate appearing for the practical examination should submit his/her record to the examiners. The candidate
is to choose two problems from part A and three problems from part B by lot. Let him/herdo any one of the problems got selected from each section on a computer. The examiners have to give data to check the program and verify the result. A print out of the two programs along with the solutions as obtained from the computer should be submitted by the candidate to the examiners. These print outs are to be treated as the answer sheets of the practical examination. The part A of the practical examination will carry a weightage of 5 , Part B a weightage of 7 and the practical record carries a weightage of 3 .

EVALUATION AND GRADING

The evaluation scheme for each course shall contain two parts.
(a) Internal Evaluation: 20% Weightage
(b) External Evaluation: 80% Weightage

Both the Internal and the External evaluation shall be carried out using direct gradingsystem as per the general guidelines of the college. Internal evaluation must consist of
(i) 2 tests (ii) one assignment (iii) one seminar and (iv) attendance, with weightage 2 fortests (together) and weightage 1 for each other components.

Each of the two internal tests is to be a 10 weightage examination of duration one hour in direct grading. The average of the final grade points of the two tests can be used to obtain the final consolidated letter grade for tests (together) according to the following table.

Average grade point (2 tests)	Grade for Tests	Grade Point for Tests
4.5 to 5	A+	$\mathbf{5}$
3.75 to 4.49	A	$\mathbf{4}$
3 to 3.74	B	$\mathbf{3}$
2 to 2.99	C	$\mathbf{2}$
Below 2	D	$\mathbf{1}$
Absent	E	$\mathbf{0}$

Table 1: Internal Grade Calculation: Examples

Tests	Grade Point of Test1	Grade Point of Test2	Average Test Grade Point	Test Grade	Test Grade Point	Test Weightage	Weighted Grade Point
Student1	4.8	3.5	4.15	A	4	2	8
Student2	5	4.8	4.9	A+	5	2	10
Student3	2.3	4.7	3.5	B	3	2	6

Assignment	Assignment Grade	Assignment Grade Point	Assignment Weightage	Assignment Weighted Grade Point
Student 1	A+	5	1	5
Student 2	A	4	1	4
Student3	C	2	1	2

Seminar	Seminar Grade	Seminar Grade Point	Seminar Weightage	Seminar Weighted Grade Point
Student1	B	3	1	3
Student2	$\mathrm{A}+$	5	1	5
Student3	D	1	1	1

Attendance	Attendance Grade	Attendance Grade Point	Attendance Weightage	Attendance Weighted Grade Point
Student 1	A+	5	1	5
Student 2	A+	5	1	5
Student 3	C	2	1	2

Consolidation	Total Weighted Grade Point	Total Weightage	Total Internal Grade Point	Final Internal Grade
Student1	21	5	$21 / 5=4.2$	A+
Student2	24	5	$24 / 5=4.8$	O
Student3	11	5	$11 / 5=2.2$	F

Programme Specific Outcome

PSOs	PROGRAMME SPECIFIC OUTCOMES
PSO1	A solid understanding of graduate level algebra, analysis and topology.
PSO2	Using their mathematical knowledge to analyze certain problems in day to day life.
PSO3	Identifying unsolved yet relevant problems in a specific field.
PSO4	Undertaking original research on a particular topic.
PSO5	Communicate mathematics accurately and effectively in both written and oral form.
PSO6	Conducting scholarly or professional activities in an ethical manner.

Detailed Syllabi

Semester 1

FMTH1C01: ABSTRACT ALGEBRA

No. of Credits: 4
No. Of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn factor group computation.
CO 2	Understand the notion of group action on a set.
CO 3	Learn Sylow theorems and its applications.
CO 4	Understand the notion of free groups.
CO 5	Understand the concept rings of polynomials
CO 6	Learn group presentation.

TEXT: JOHN B. FRALEIGH, A FIRST COURSE IN ABSTRACT ALGEBRA ($7^{\text {th }}$ Edn.), Pearson Education Inc., 2003.

Module 1

Direct products \& finitely generated Abelian Groups, Factor Groups, Factor-Group Computations and Simple Groups, Group action on a set, Applications of G-set to counting [Sections 11, 14, 15, 16, 17].

Module 2

Isomorphism theorems, Series of groups, (Omit Butterfly Lemma and proof of the Schreier Theorem), Sylow theorems, Applications of the Sylow theory, Free Groups (Omit Another look at free Abelian groups), Group Presentations
[Sections 34, 35, 36, 37, 39, 40].

Module 3

Rings of polynomials, Factorization of polynomials over a field, Non Commutative examples, Homomorphism and factor rings, Prime and Maximal Ideals.
[Sections 22, 23, 24, 26, 27].

References

[1] N. Bourbaki: Elements of Mathematics: Algebra I, Springer; 1998.
[2] Dummit and Foote: Abstract algebra (3 $3^{\text {rd }}$ edn.); Wiley India; 2011.
[3] P.A. Grillet: Abstract algebra(2 ${ }^{\text {nd }}$ edn.); Springer; 2007
[4] I.N. Herstein: Topics in Algebra ($2^{\text {nd }}$ Edn); John Wiley \& Sons, 2006.
[5] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4 ${ }^{\text {th }}$ Printing); 1987.
[6] N. Jacobson: Basic Algebra-Vol. I; Hindustan Publishing Corporation (India), Delhi; 1991.
[7] T.Y. Lam: Exercises in classical ring theory (2 $2^{\text {nd }}$ edn); Springer; 2003.
[8] C. Lanski: Concepts in Abstract Algebra; American Mathematical Society; 2010.
[9] N.H. Mc Coy: Introduction to modern algebra, Literary Licensing, LLC; 2012.
[10] S. M. Ross: Topics in Finite and Discrete Mathematics; Cambridge; 2000.
[11] J. Rotman: An Introduction to the Theory of Groups (4th edn.); Springer, 1999.

FMTH1C02: LINEAR ALGEBRA

No. of Credits: 4
No. Of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn basic properties of vector spaces.
CO 2	Understand the relation between linear transformations and matrices.
CO 3	Understand the concept of diagonalizable and triangulable operators and various fundamental results of these operators.
CO 4	Understand Primary decomposition Theorem.
CO 5	Learn basic properties inner product spaces.

TEXT: HOFFMAN K. and KUNZE R., LINEAR ALGEBRA (2 ${ }^{\text {nd }}$ Edn.), Prentice-Hall of India, 1991.

Module 1

Vector Spaces \& Linear Transformations [Chapter 2 Sections 2.1-2.4; Chapter 3, Sections 3.1 to 3.3 from the text]

Module 2

Linear Transformations (continued) and Elementary Canonical Forms [Chapter 3 Sections 3.4 3.7; Chapter 6, Sections 6.1 to 6.4 from the text]

Module 3

Elementary Canonical Forms (continued), Inner Product Spaces [Chapter 6, Sections 6.6 \& 6.7; Chapter 8, Sections $8.1 \& 8.2$ from the text]

References

[1] P. R. Halmos: Finite Dimensional Vector spaces; Narosa Pub House, New Delhi; 1980.
[2] A. K. Hazra: Matrix: Algebra, Calculus and generalised inverse- Part I; Cambridge International Science Publishing; 2007.
[3] I. N. Herstein: Topics in Algebra; Wiley Eastern Ltd Reprint; 1991.
[4] S. Kumaresan: Linear Algebra-A Geometric Approach; Prentice Hall of India; 2000.
[5] S. Lang: Linear Algebra; Addison Wesley Pub.Co.Reading, Mass; 1972.
[6] S. Maclane and G. Birkhoff: Algebra; Macmillan Pub Co NY; 1967.
[7] N. H. McCoy and R. Thomas: Algebra; Allyn Bacon Inc NY; 1977.
[8] R. R. Stoll and E.T.Wong: Linear Algebra; Academic Press International Edn; 1968.
[9] G. Strang: linear algebra and its applications (4th edn.); Cengage Learning; 2006.

FMTH1C03: REAL ANALYSIS I

No. of Credits: 4
No. Of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn the topology of the real line
CO 2	Understand the notions of Continuity, Differentiation and Integration of real functions
CO 3	Learn Uniform convergence of sequence of functions, equicontinuity of family of functions, and Weierstrass theorems

TEXT: RUDIN W., PRINCIPLES OF MATHEMATICAL ANALYSIS ($3^{\text {rd }}$ Edn.), Mc.Graw-Hill, 1986.

Module 1

Basic Topololgy Finite, Countable and Uncountable sets Metric Spaces, Compact Sets, Perfect Sets, Connected Sets. Continuity - Limits of function, Continuous functions, Continuity and compactness, continuity and connectedness, Discontinuities, Monotonic functions, Infinite limits and Limits at Infinity
[Chapter 2 \& Chapter 4].

Module 2

Differentiation The derivative of a real function, Mean Value theorems, The continuity of Derivatives, L'Hospitals Rule, Derivatives of Higher Order, Taylors Theorem, Differentiation of Vector valued functions. The Riemann Stieltjes Integral, - Definition and Existence of the integral, properties of the integral, Integration and Differentiation
[Chapter 5 \& Chapter 6 up to and including 6.22].

Module 3

The Riemann Stieltjes Integral (Continued) - Integration of Vector vector-valued Functions, Rectifiable curves. Sequences and Series of Functions - Discussion of Main problem, Uniform convergence, Uniform convergence and continuity, Uniform convergence and Integration, Uniform convergence and Differentiation. Equicontinuous Families of Functions, The Stone Weierstrass Theorem
[Chapters 6 (from 6.23 to 6.27) \& Chapter 7 (upto and including 7.27 only)].

References

[1] H. Amann and J. Escher: Analysis-I; Birkhuser; 2006.
[2] T. M. Apostol: Mathematical Analysis (2nd Edn.); Narosa; 2002.
[3] R. G. Bartle: Elements of Real Analysis (2nd Edn.); Wiley International Edn.; 1976.
[4] R. G. Bartle and D.R. Sherbert: Introduction to Real Analysis; John Wiley Bros; 1982.
[5] J. V. Deshpande: Mathematical Analysis and Applications- an Introduction; Alpha Science International; 2004.
[6] V. Ganapathy Iyer: Mathematical analysis; Tata McGrawHill; 2003.
[7] R. A. Gordon: Real Analysis- a first course (2nd Edn.); Pearson; 2009.
[8] F. James: Fundamentals of Real analysis; CRC Press; 1991.
[9] A. N. Kolmogorov and S. V. Fomin: Introductory Real Analysis; Dover Publica-tions Inc; 1998.
[10] S. Lang: Under Graduate Analysis (2nd Edn.); Springer-Verlag; 1997.
[11] M. H. Protter and C. B. Moray: A first course in Real Analysis; Springer Verlag UTM; 1977.
[12] C. C. Pugh: Real Mathematical Analysis, Springer; 2010.
[13] K. A. Ross: Elementary Analysis- The Theory of Calculus (2nd edn.); Springer; 2013.
[14] A. H. Smith and Jr. W.A. Albrecht: Fundamental concepts of analysis; Prentice Hall of India; 1966
[15] V. A. Zorich: Mathematical Analysis-I; Springer; 2008.

FMTH1C04: DISCRETE MATHEMATICS

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Understand the fundamentals of Graph Theory
CO 2	Learn the structure of graphs and familiarize the basic concepts to analyze different problems in different branches
CO 3	Acquire a basic knowledge of formal languages, grammar and automata
CO 4	Learn equivalence of deterministic and nondeterministic finite accepters
CO 5	Learn the concepts of partial order relation and total order relation

TEXT 1: K. D JOSHI, FOUNDATIONS OF DISCRETE MATHEMATICS, New Age International (P) Limited, New Delhi, 1989.

TEXT 2: R. BALAKRISHNAN and K. RANGANATHAN, A TEXT BOOK OF GRAPH THEORY, Springer-Verlag New York, Inc., 2000.

TEXT 3: PETER LINZ, AN INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA (2 ${ }^{\text {nd }}$ Edn.), Narosa Publishing House, New Delhi, 1997.

Module 1

Order Relations, Lattices; Boolean Algebra Definition and Properties, Boolean Functions. [TEXT 1 - Chapter 3 (section. 3 (3.1-3.11), chapter 4 (sections 1\& 2)].

Module 2

Basic concepts, Subgraphs, Degree of vertices, Paths and connectedness, Automorphism of a simple graph, Operations on graphs, Vertex cuts and Edge cuts, Connectivity and Edge connectivity, Trees-Definition, Characterization and Simple properties, Eulerian graphs, Planar and Non planar graphs, Euler formula and its consequences, K5 and K3,3 are non planar graphs, Dual of a plane graph.
[TEXT 2 Chapter 1 Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, Chapter 3 Sections 3.1, 3.2, Chapter 4 Section 4.1(upto and including 4.1.10), Chapter 6 Section 6.1(upto and including 6.1.2), Chapter 8 Sections 8.1(upto and including 8.1.7), 8.2(upto and including 8.2.7), 8.3, 8.4.]

Module 3

Automata and Formal Languages: Introduction to the theory of Computation, Finite Automata.
[TEXT 3 - Chapter 1 (sections $1.2 \& 1.3$); Chapter 2 (sections 2.1, $2.2 \& 2.3$)]

References

[1] J. C. Abbot: Sets, lattices and Boolean Algebras; Allyn and Bacon, Boston; 1969.
[2] J. A. Bondy, U.S.R. Murty: Graph Theory; Springer; 2000.
[3] S. M. Cioaba and M.R. Murty: A First Course in Graph Theory and Combinatorics; Hindustan Book Agency; 2009.
[4] J. A. Clark: A first look at Graph Theory; World Scienti c; 1991.
[5] Colman and Busby: Discrete Mathematical Structures; Prentice Hall of India; 1985.
[6] C. J. Dale: An Introduction to Data base systems (3rd Edn.); Addison Wesley Pub Co., Reading Mass; 1981.
[7] R. Diestel: Graph Theory(4th Edn.); Springer-Verlag; 2010
[8] S. R. Givant and P. Halmos: Introduction to Boolean algebras; Springer; 2009.
[9] R. P. Grimaldi: Discrete and Combinatorial Mathematics- an applied introduction (5th edn.); Pearson; 2007.
[10] J. L. Gross: Graph theory and its applications (2nd edn.); Chapman \& Hall/CRC; 2005.
[11] F. Harary: Graph Theory; Narosa Pub. House, New Delhi; 1992.
[12] D. J. Hunter: Essentials of Discrete Mathematics (3rd edn.); Jones and Bartlett Publishers; 2015.
[13] A. V. Kelarev: Graph Algebras and Automata; CRC Press; 2003
[14] D. E. Knuth: The art of Computer programming -Vols. I to III; Addison Wesley Pub Co., Reading Mass; 1973.
[15] C. L. Liu: Elements of Discrete Mathematics (2nd Edn.); Mc Graw Hill International Edns. Singapore; 1985.
[16] L. Lovsz, J. Pelikn and K. Vesztergombi: Discrete Mathematics: Elementary and beyond; Springer; 2003.
[17] J. G. Michaels and K.H. Rosen: Applications of Discrete Mathematics; McGraw-Hill International Edn. (Mathematics \& Statistics Series); 1992.
[18] Narasing Deo: Graph Theory with applications to Engineering and Computer Science; Prentice Hall of India; 1987.
[19] W. T. Tutte: Graph Theory; Cambridge University Press; 2001
[20] D. B. West: Introduction to graph theory; Prentice Hall; 2000.
[21] R. J. Wilson: Introduction to Graph Theory; Longman Scientific and Technical Essex(copublished with John Wiley and sons NY); 1985.

FMTH1C05: NUMBER THEORY
No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Be able to effectively express the concepts and results of number theory
CO 2	Learn basic theory of arithmetical functions and Dirichlet multiplication, averages of some arithmetical functions
CO 3	Understand distribution of prime numbers and prime number theorem.
CO 4	Learn the concept of quadratic residues and Quadratic reciprocity laws.
CO 5	Get a basic knowledge in Cryptography

TEXT 1: APOSTOL T.M., INTRODUCTION TO ANALYTIC NUMBER THEORY, Narosa Publishing House, New Delhi, 1990.

TEXT 2: KOBLITZ NEAL A., COURSE IN NUMBER THEROY AND CRYPTOGRAPHY, SpringerVerlag, NewYork, 1987.

Module 1

Arithmetical functions and Dirichlet multiplication; Averages of arithmetical functions [Chapter 2: sections 2.1 to 2.14, 2.18, 2.19; Chapter 3: sections 3.1 to 3.4, 3.9 to 3.12 of Text 1]

Module 2

Some elementary theorems on the distribution of prime numbers [Chapter 4: Sections 4.1 to 4.10 of Text 1]

Module 3

Quadratic residues and quadratic reciprocity law [Chapter 9: sections 9.1 to 9.8 of Text 1] Cryptography [Chapters 3 of Text 2.]

References

[1] A. Beautelspacher: Cryptology; Mathematical Association of America (Incorporated); 1994
[2] H. Davenport: The higher arithmetic(6th Edn.); Cambridge Univ.Press; 1992
[3] G. H. Hardy and E.M. Wright: Introduction to the theory of numbers; Oxford International Edn; 1985
[4] A. Hurwitz \& N. Kritiko: Lectures on Number Theory; Springer Verlag ,Universi-text; 1986
[5] T. Koshy: Elementary Number Theory with Applications; Harcourt / Academic Press; 2002
[6] D. Redmond: Number Theory; Monographs \& Texts in Mathematics No: 220; Mar-cel Dekker Inc.; 1994
[7] P. Ribenboim: The little book of Big Primes; Springer-Verlag, New York; 1991
[8] K.H. Rosen: Elementary Number Theory and its applications(3rd Edn.); Addison Wesley Pub Co.; 1993
[9] W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004
[10] D.R. Stinson: Cryptography- Theory and Practice (2nd Edn.); Chapman \& Hall / CRC (214. Simon Sing : The Code Book The Fourth Estate London); 1999
[11] J. Stopple: A Primer of Analytic Number Theory-From Pythagorus to Riemann; Cambridge Univ Press; 2003
[12] S.Y. Yan: Number Theroy for Computing(2nd Edn.); Springer-Verlag; 2002

FMTH1A01: ABILITY ENHANCEMENT COURSE

No. of Credits: 4

Successful fulfillment of any one of the following shall be considered as the completion of AEC. (i) Internship, (ii) Class room seminar presentation, (iii) Publications, (iv) Case study analysis, (v) Paper presentation, (vi) Book reviews. A student can select any one of these as AEC.

Internship: Internship of duration 5 days under the guidance of a faculty in an institution/department other than the parent department. A certificate of the same should be obtained and submitted to the parent department.

Class room seminar: One seminar of duration one hour based on topics in mathematics beyond the prescribed syllabus.

Publications: One paper published in conference proceedings/ Journals. A copy of the same should be submitted to the parent department.

Case study analysis: Report of the case study should be submitted to the parent department.

Paper presentation: Presentation of a paper in a regional/ national/ international seminar/conference. A copy of the certificate of presentation should be submitted to the parent department.

Book Reviews: Review of a book. Report of the review should be submitted to the parent department.

Semester 2

FMTH2C06: GALOIS THEORY

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Get a basic knowledge in Galois Theory
CO 2	Learn how to apply Galois Theory in various contexts
CO 3	Learn different types of extensions of fields
CO 4	Learn automorphisms of fields

TEXT: John B. Fraleigh: A FIRST COURSE IN ABSTRACT ALGEBRA (7 ${ }^{\text {th }}$ Edn.), Pearson Education Inc., 2003.

$$
\text { Module } 1
$$

Introduction to Extension Fields, Algebraic Extensions (Omit Proof of the Existence of an Algebraic Closure), Geometric Constructions, Finite Fields
[29, 31, 32, 33]

Module 2

Automorphisms of Fields, The Isomorphism Extension Theorem, Splitting Fields, Separable Extensions.
[48, 49, 50, 51]

Module 3

Galois Theory, Illustration of Galois Theory, Cyclotomic Extensions, Insolvability of the Quintic.
[53, 54, 55, 56$]$

References

[1] N. Bourbaki: Elements of Mathematics: Algebra I, Springer; 1998
[2] Dummit and Foote: Abstract algebra(3rd edn.); Wiley India; 2011
[3] M.H. Fenrick: Introduction to the Galois correspondence(2nd edn.); Birkhuser; 1998
[4] P.A. Grillet: Abstract algebra(2nd edn.); Springer; 2007
[5] I.N. Herstein: Topics in Algebra (2nd Edn); John Wiley \& Sons, 2006.
[6] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987
[7] C. Lanski: Concepts in Abstract Algebra; American Mathematical Society; 2010
[8] R. Lidl and G. Pilz Applied abstract algebra(2nd edn.); Springer; 1998
[9] N.H. Mc Coy: Introduction to modern algebra, Literary Licensing, LLC; 2012
[10] J. Rotman: An Introduction to the Theory of Groups(4th edn.); Springer; 1999
[11] I. Stewart: Galois theory(3rd edn.); Chapman \& Hall/CRC; 2003

FMTH2C07: REAL ANALYSIS II

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO1	Learn why and for what the theory of measure was introduced
CO2	Learn the concept of measures and measurable functions
CO3	Learn Lebesgue integration and its various properties
CO4	Learn how to generalize the concept of measure theory.
CO5	Learn that a measure may take negative values.

TEXT: H. L.Royden, P. M. FitzpatrickH.L. REAL ANAYLSIS (4th Edn.), Prentice Hall of India, 2000.

Module 1

The Real Numbers: Sets, Sequences and Functions (Quick review)
Chapter 1: Definitions of Sigma Algebra and Borel set (Relevant Definitions from Section 1.4 and Statement of Proposition13)

Lebesgue Measure Chapter 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, and Section 2.7 only upto proposition19
(Cantor Lebesgue function and related results omitted, Proposition 20 omitted, Proposition 21 omitted, Proposition 22 omitted)

Lebesgue Measurable Functions Chapter 3: Sections 3.1, 3.2, 3.3

Module 2

Lebesgue Integration Chapter 4: Sections 4.1, 4.2, 4.3, 4.4, 4.5 , 4.6
Lebesgue Integration: Further Topics Chapter 5: Sections: 5.1 and 5.2 .

Module 3

Differentiation and Integration
Chapter 6: Section 6.1 , Section 6.2 (Proof of Vitali Covering Lemma omitted, Lemma 3 omitted),
Section 6.3, Section 6.4 (Proof of Theorem 9 omitted), and Section 6.5.
The L^{p} spaces: Completeness and Approximation Chapter 7 : Sections 7.1 , 7.2
Section 7.3 upto Riesz Fischer Theorem (Thorem 7 omitted, Theorem 8 omitted)

References

[1] K B. Athreya and S N Lahiri:, Measure theory,Hindustan Book Agency,New Delhi,(2006).
[2] R G Bartle:, The Elements of Integration and Lebsgue Mesure, Wiley(1995).
[3] S K Berberian: measure theory and Integration,The Mc Millan Company,New York,(1965).
[4] L M Graves: ,The Theory of Functions of Real Variable Tata McGraw-Hill Book Co(1978)
[5] P R Halmos: , Measure Theory, GTM ,Springer Verlag
[6] W Rudin:, Real and Complex Analysis,Tata McGraw Hill,New Delhi,2006
[7] I K Rana:,An Introduction to Measure and Integration,Narosa Publishing Com-pany,New York.
[8] Terence Tao: ,An Introduction to Measure Theory,Graduate Studies in Mathemat-ics,Vol 126 AMS

FMTH2C08: TOPOLOGY

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO1	Be proficient in the abstract notion of a topological space, where continuous function are defined in terms of open set not in the traditional $\varepsilon-\delta$ definition used in analysis
CO2	Realize Intermediate value theorem is a statement about connectedness, Bolzano weierstrass theorem is a theorem about compactness and so on
CO 3	Learn the concept of quotient topology CO 4Learn five properties such as T0, T1, T2, T3 and T4 of a topological space X which express how rich the open sets is. More precisely, each of them tells us how tightly a closed subset can be wrapped in an open set.

TEXT : JOSHI, K.D., INTRODUCTION TO GENERAL TOPOLOGY (Revised Edn.), New Age International(P) Ltd., New Delhi, 1983.

Module 1

A Quick Revision of Chapter 1,2 and 3. Topological Spaces, Basic Concepts
[Chapter 4 and Chapter 5 Sections 1, Section 2 (excluding 2.11 and 2.12) and Section 3 only]

Module 2

Making Functions Continuous, Quotient Spaces, Spaces with Special Properties
[Chapter 5 Section 4 and Chapter 6]

Module 3

Separation Axioms: Hierarchy of Separation Axioms, Compactness and Separation Axioms, The Urysohn Characterization of Normality, Tietze Characterisation of Normality.
[Chapter 7: Sections 1 to 3 and Section 4 (up to and including 4.6)]

References

[1] M.A. Armstrong: Basic Topology; Springer- Verlag New York; 1983
[2] J. Dugundji: Topology; Prentice Hall of India; 1975
[3] M. Gemignani: Elementary Topology; Addison Wesley Pub Co Reading Mass; 1971
[4] M.G. Murdeshwar: General Topology(2nd Edn.); Wiley Eastern Ltd; 1990
[5] G.F. Simmons: Introduction to Topology and Modern Analysis; McGraw-Hill International Student Edn.; 1963
[6] S. Willard: General Topology; Addison Wesley Pub Co., Reading Mass; 1976

FMTH2C09: ODE AND CALCULUS OF VARIATIONS

No. of Credits: 4
No. Of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn the existence of uniqueness of solutions for a system of first order ODEs
CO 2	Learn many solution techniques such as separation of variables, variation of parameter power series method, Frobeniious method etc.
CO 3	Learn method of solving system of first order differential calculus equations
CO 4	Get an idea of how to analyze the behavior of solutions such as stability, asymptotic stability etc.
CO 5	Get a basic knowledge of Calculus of variation

TEXT: SIMMONS, G.F., DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES (3rd Edn.), New Delhi, 1974.

Module 1

Qualitative properties of solutions; Oscillations and Sturm Separation Theorem, The Sturm Comparison Theorem [Chapter 4 : Sections 24, 25]

Power Series Solutions and Special functions; Introduction. A Review of Power Series, Series Solutions of First Order Equations, Second Order Linear Equations. Ordinary Points, Regular singular Points, Regular singular Points (Continued), Gauss Hypergeometric Equation, The Point at Infinity [Chapter 5: Sections 26,27, 28, 29, 30, 31,32]

Module 2

Some special functions of Mathematical Physics; Legendre Polynomials, Properties of Legendre Polynomials, Bessel Functions. The Gamma Function, Properties of Bessel Functions. [Chapter 8: Sections 44,45,46,47]

Systems of First Order Equations; Linear Systems, Homogeneous Linear Systems with Constant Coefficients. [Chapter 10: Sections 55, 56]

The Existence and Uniqueness of Solutions; The Method of Successive Approximations, Picard's Theorem [Chapter 13 : Sections 69,70]

Module 3

Non linear Equations; Autonomous systems. The Phase Plane and Its Phenomena, Types of Critical Points. Stability, Critical Points and Stability for Linear Systems, Stability by Liapunov’s Direct Method, Simple Critical Points of Nonlinear Systems.
[Chapter 11 : Sections 58, 59, 60, 61, 62]
The Calculus of Variations; Introduction. Some Typical Problems of the subject, Euler's Differential Equation for an Extremal, Isoperimetric Problems.
[Chapter 12 : Sections 66, 67, 68]

References

[1] G. Birkhoff and G.C. Rota: Ordinary Differential Equations(3rd Edn.); Edn. Wiley \& Sons; 1978
[2] W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundary value problems(2nd Edn.); John Wiley \& Sons, NY; 1969
[3] A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd., New Delhi; 1990
[4] E.A. Coddington: An Introduction to Ordinary Differential Equtions; Printice Hall of India, New Delhi; 1974
[5] R.Courant and D. Hilbert: Methods of Mathematical Physics- vol I; Wiley Eastern Reprint; 1975
[6] P. Hartman: Ordinary Differential Equations; John Wiley \& Sons; 1964
[7] L.S. Pontriyagin : A course in ordinary Differential Equations Hindustan Pub. Corporation, Delhi; 1967
[8] I. Sneddon: Elements of Partial Di erential Equations; McGraw-Hill International Edn.; 1957

FMTH2C10: OPERATIONS RESEARCH

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn graphical method and the simplex algorithm for solving a linear programming problem
CO 2	Learn more optimization techniques for solving the linear programming models transportation problem and integer programming problem
CO 3	Learn optimization techniques for solving some network related problems. CO 4Learn sensitivity analysis and parametric programming, which describes how various changes in the problem affect its solution

TEXT: K.V. MITAL; C. MOHAN., OPTIMIZATION METHODS IN OPERATIONS RESEARCH AND SYSTEMS ANALYSIS (3rd. Edn.), New Age International(P) Ltd., 1996.
(Pre- requisites: A basic course in calculus and Linear Algebra)

$$
\text { Module } 1
$$

Convex Functions; Linear Programming
[Chapter 2 : Sections 11 to 12 ; Chapter 3 : Sections 1 to 15,17 from the text]

Module 2
Linear Programming (contd.); Transportation Problem
[Chapter 3 : Sections 18 to 20, 22; Chapter 4 Sections 1 to 11,13 from the text]

Module 3

Integer Programming; Sensitivity Analysis [Chapter 6 : Sections 1 to 9; Chapter 7 Sections 1 to 10 from the text] Flow and Potential in Networks; Theory of Games [Chapter 5 : Sections 1 to 4, 67 ; Chapter 12 : all Sections]

References

[1] R.L. Acko and M.W. Sasioni: Fundamentals of Operations Research; Wiley Eastern Ltd. New Delhi; 1991
[2] C.S. Beightler, D.T. Philiphs and D.J. Wilde: Foundations of optimization(2nd Edn.); Prentice Hall of India, Delhi; 1979
[3] G. Hadley: Linear Programming; Addison-Wesley Pub Co Reading, Mass; 1975
[4] G. Hadley: Non-linear and Dynamic Programming; Wiley Eastern Pub Co. Reading, Mass; 1964
[5] H.S. Kasana and K.D. Kumar: Introductory Operations Research-Theory and Applications; Springer-Verlag; 2003
[6] R. Panneerselvam: Operations Research; PHI, New Delhi(Fifth printing); 2004
[7] A. Ravindran, D.T. Philips and J.J. Solberg: Operations Research-Principles and Practices(2nd Edn.); John Wiley \& Sons; 2000
[8] G. Strang: Linear Algebra and Its Applications(4th Edn.); Cengage Learning; 2006
[9] Hamdy A. Taha: Operations Research- An Introduction(4th Edn.); Macmillan Pub Co. Delhi; 1989

FMTH2A02: PROFESSIONAL COMPETENCY COURSE

No. of Credits: 4

A student can select any one of the following as Professional Competency course:

1. Technical writing with $L^{A} T_{E} X$.
2. Scientific Programming with Scilab.
3. Scientific Programming with Python.

1. TECHNICAL WRITING WITH $\mathrm{L}^{\mathrm{A}} \mathbf{T}_{\mathrm{E}} \mathbf{X}$

1. Installation of the software $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$
2. Understanding $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ compilation
3. Basic Syntex, Writing equations, Matrix, Tables
4. Page Layout : Titles, Abstract, Chapters, Sections, Equation references, citation.
5. List making environments
6. Table of contents, Generating new commands
7. Figure handling, numbering, List of figures, List of tables, Generating bibliography and index
8. Beamer presentation
9. Pstricks: drawing simple pictures, Function plotting, drawing pictures with nodes
10. Tikz:drawing simple pictures, Function plotting, drawing pictures with nodes

References

[1] L. Lamport: A Document Preparation System, User's Guide and Reference Manual, Addison-Wesley, New York, second edition, 1994.
[2] M.R.C. van Dongen: ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and Friends, Springer-Verlag Berlin Heidelberg 2012.
[3] Stefan Kottwitz: $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ Cookbook, Packt Publishing 2015.
[4] David F. Gri ths and Desmond J. Higham: Learning $L^{A} T_{E} X$ (second edition), Siam 2016.
[5] George Gratzer: Practical $L^{A} T_{E} X$, Springer 2015.
[6] W. Snow: $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ for the Beginner. Addison-Wesley, Reading, 1992
[7] D. E. Knuth:The T_{E} X Book. Addison-Wesley, Reading, second edition, 1986
[8] M. Goossens, F. Mittelbach, and A. Samarin :The $L^{A} T_{E}$ XCompanion. Addison-Wesley, Reading, MA, second edition, 2000.
[9] M. Goossens and S. Rahtz:TheL ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}}$ XWeb Companion: Integrating TEX, HTML, and XML. Addison-Wesley Series on Tools and Techniques for Computer Typesetting. Addison-Wesley, Reading, MA, 1999.
[10] M. Goossens, S. Rahtz, and F. Mittelbach: The $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}}$ XGraphics Companion: Illustrating Documents with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and PostScript. Addison-Wesley Series on Tools and Techniques for Computer Typesetting. Addison-Wesley, New York, 1997

2. PROGRAMMING WITH SCILAB

1. Installation of the software Scilab.
2. Basic syntax, Mathematical Operators, Predefined constants, Built in functions.
3. Complex numbers, Polynomials, Vectors, Matrix. Handling these data structures using built in functions
4. Programming
(a) Functions
(b) Loops
(c) Conditional statements
(d) Handling .sci files
5. Installation of additional packages e.g. loptimization"
6. Graphics handling
(a) $2 \mathrm{D}, 3 \mathrm{D}$
(b) Generating .jpg files
(c) Function plotting
(d) Data plotting
7. Applications
(a) Numerical Linear Algebra (Solving linear equations, eigenvalues etc.)
(b) Numerical Analysis : iterative methods
(c) ODE: plotting solution curves

References

[1] Claude Gomez, Carey Bunks Jean-Philippe Chancelier Fran ois Delebecque Mauriee Goursat Ramine Nikoukhah Serge Steer : Engineering and Scientific Computing with Scilab, Springer-Science, LLC, 1998.
[2] Sandeep Nagar: Introduction to Scilab For Engineers and Scientists, Apress, 2017

3. SCIENTIFIC PROGRAMMING WITH PYTHON

1. Literal Constants, Numbers, Strings, Variables, Identifier, Data types
2. Operators, Operator Precedence, Expressions
3. Control flow: If, while, for, break, continue statements
4. Functions: Defining a function, function parameters, local variables, default arguments, keywords, return statement, Doc-strings
5. Modules: using system modules, import statements, creating modules
6. Data Structures: Lists, tuples, sequences.
7. Writing a python script
8. Files: Input and output using file and pickle module
9. Exceptions: Errors, Try-except statement, raising exceptions, try-finally statement
10. Roots of Nonlinear Equations: Evaluation of Polynomials, Bisection method, NewtonRaphson Method, Complex roots by Bairstow method.
11. Direct Solution of Linear Equations: Solution by elimination, Gauss Elimination method, Gauss Elimination with Pivoting, Triangular Factorisation method
12. Iterative Solution of Linear Equations: Jacobi Iteration method, Gauss-Seidel method.
13. Curve Fitting-Interpolation: Lagrange Interpolation Polynomial, Newton Interpolation Polynomial, Divided Difference Table, Interpolation with Equidistant points.
14. Numerical Differentiation: Differentiating Continuous functions, Differentiating Tabulated functions.
15. Numerical Integration: Trapezoidal Rule, Simpsons $1 / 3$ rule.
16. Numerical Solution of Ordinary Differential Equations: Eulers Method, Rung-Kutta method (Order 4)
17. Eigenvalue problems: Polynomial Method, Power method.

References

[1] Swaroop C H: , A Byte of Python.
[2] Amit Saha: ,Doing Math with Python, No Starch Press, 2015.
[3] SD Conte and Carl De Boor : Elementary Numerical Analysis (An algorithmic approach) 3rd edition, McGraw-Hill, New Delhi
[4] K. Sankara Rao : Numerical Methods for Scientists and Engineers Prentice Hall of India, New Delhi.
[5] Carl E Froberg : Introduction to Numerical Analysis, Addison Wesley Pub Co, 2nd Edition
[6] Knuth D.E. : The Art of Computer Programming: Fundamental Algorithms(Volume I), Addison Wesley, Narosa Publication, New Delhi.
[7] Python Programming, wikibooks contributors Programming Python, Mark Lutz,
[8] Python 3 Object Oriented Programming, Dusty Philips, PACKT Open source Pub-lishing
[9] Python Programming Fundamentals, Kent D Lee, Springer
[10] Learning to Program Using Python, Cody Jackson, Kindle Edition
[11] Online reading http://pythonbooks.revolunet.com/

Semester 3

FMTH3C11: MULTIVARIABLE CALCULUS AND GEOMETRY

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Be proficient in differentiation of functions of several variables.
CO 2	Understand curves in plane and in space.
CO 3	Get a deep knowledge of Curvature, torsion, Serret-Frenet formulae
CO 4	Learn Fundamental theorem of curves in plane and space.
CO 5	Learn the concept of Surfaces in three dimension, smooth surfaces, surfaces of revolution
CO 6	Learn explicitly tangent and normal to the surfaces
CO 7	Get a thorough understanding of oriented surfaces, first and second fundamental forms surfaces, gaussian curvature and geodesic curvature and so on.

TEXT 1: RUDIN W., PRINCIPLES OF MATHEMATICAL ANALYSIS, (3rd Edn.), Mc. Graw Hill, 1986.

TEXT 2: ANDREW PRESSLEY, ELEMENTARY DIFFERENTIAL GEOMETRY (2nd Edn.), Springer-Verlag, 2010.

Module 1

Functions of Several Variables Linear Transformations, Differentiation, The Contraction Principle, The Inverse Function Theorem, the Implicit Function Theorem. [Chapter 9: Sections 1-29, 33-37 from Text -1]

Module 2

What is a curve? Arc-length, Reparametrization, Closed curves, Level curves versus parametrized curves. Curvature, Plane curves, Space curves. What is a surface? Smooth surfaces, Smooth maps, Tangents and derivatives, Normals and orientability. [Chapter 1: Sections 1-5, Chapter 2: Sections 1-3, Chapter 4: Sections 1-5 from Text - 2]

Module 3

Level surfaces, Applications of the inverse function theorem. Lengths of curves on surfaces, The second fundamental form, The Gauss and Weingarten maps, Normal and geodesic curvatures. Gaussian and mean curvatures, Principal curvatures of a surface. [Chapter 5: Sections $1 \& 6$, Chapter 6: Sections 1, Chapter 7: Sections 1-3, Chapter 8: Sections 1-2 from Text-2]

References

[1] M. P. do Carmo: Differential Geometry of Curves and Surfaces;
[2] W. Klingenberg: A course in Differential Geometry;
[3] J. R. Munkres: Analysis on Manifolds; Westview Press; 1997
[4] C. C. Pugh: Real Mathematical Analysis, Springer; 2010
[5] M. Spivak: A Comprehensive Introduction to Differential Geometry-Vol. I; Publish or Perish, Boston; 1970
[6] M. Spivak: Calculus on Manifolds; Westview Press; 1971
[7] V.A. Zorich: Mathematical Analysis-I; Springer; 2008

FMTH3C12: COMPLEX ANALYSIS

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn the concept of (complex) differentiation and integration of functions defined on the complex plane and their properties
CO 2	Be thorough in power series representation of analytic functions, different versions of Cauchy's Theorem.
CO 3	Get an idea of singularities of analytic functions and their classifications
CO 4	Learn different versions of maximum modulus theorem

TEXT: JOHN B. CONWAY, FUNCTIONS OF ONE COMPLEX VARIABLE (2nd Edn.);

Springer International Student Edition; 1992

Module 1

The extended plane and its spherical representation, Power series, Analytic functions, Analytic functions as mappings, Mobius transformations, Riemann-Stieltjes integrals
[Chapt. I Section 6; Chapt. III Sections 1, 2 and 3; Chapter IV Section 1]

Module 2

Power series representation of analytic functions, Zeros of an analytic function, The index of a closed curve, Cauchy's Theorem and Integral Formula, The homotopic version of Cauchys Theorem and simple connectivity, Counting zeros; the Open Mapping Theorem and Goursats Theorem.

Module 3

The classification of singularities, Residues, The Argument Principle and The Maximum Principle, Schwarz's Lemma, Convex functions and Hadamards three circles theorem [Chapt. V: Sections 1, 2, 3; Chapter VI Sections 1, 2, 3]

References

[1] H. Cartan: Elementary Theory of analytic functions of one or several variables; Addison Wesley Pub. Co.; 1973
[2] T.W. Gamelin: Complex Analysis; Springer-Verlag, NY Inc.; 2001
[3] T.O. Moore and E.H. Hadlock: Complex Analysis, Series in Pure Mathematics-Vol. 9; World Scienti c; 1991
[4] L. Pennisi: Elements of Complex Variables(2nd Edn.); Holf, Rinehart \& Winston; 1976
[5] R. Remmert: Theory of Complex Functions; UTM , Springer-Verlag, NY; 1991
[6] W. Rudin: Real and Complex Analysis(3rd Edn.); Mc Graw - Hill International Editions; 1987
[7] H. Sliverman: Complex Variables; Houghton Mi in Co. Boston; 1975

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn the concept of normed linear spaces and Hilbert spaces.
CO 2	Learn various properties operators defined on both normed and Hilbert spaces.
CO 3	Understand the concept dual space.
CO 4	Learn the completeness of the space bounded linear operators

TEXT: YULI EIDELMAN, VITALI MILMAN \& ANTONIS TSOLOMITIS;
 FUNCTIONAL ANALYSIS AN INTRODUCTION; AMS, Providence, Rhode Island, 2004

Module 1

Linear Spaces; normed spaces; first examples: Linear spaces, Normed spaces; first examples, Holder's inequality, Minkowski's inequality, Topological and geometric notions, Quotient normed space, Completeness; completion.
[Chapter 1 Sections 1.1-1.5]

Module 2

Hilbert spaces: Basic notions; first examples, Cauchy- Schwartz inequality and Hilbertian norm, Bessels inequality ,Complete systems, Gram-Schmidt orthogonalization procedure, orthogonal bases, Parseval's identity; Projection; Orthogonal decompositions; Separable case, The distance from a point to a convex set, Orthogonal decomposition; Linear functionals; Linear functionals in a general linear space, Bounded linear functionals, Bounded linear functionals in a Hilbert space, An example of a non separable Hilbert space.
[Chapter 2; Sections 2.1-2.3 (omit Proposition 2.1. 15)]

Module 3

The dual space: The Hahn Banach Theorem and its first consequences, corollories of the Hahn Banach theorem, Examples of dual spaces.

Bounded linear Operators: Completeness of the space of bounded linear operators, Examples of linear operators, Compact operators, Compact sets, The space of compact operators, Dual operators ,Operators of finite rank, Compactness of the integral operators in L2, Convergence in the space of bounded operators, Invertible operators.
[Chapter3; Sections 3.1, 3.2; Chapter4; Sections 4.1-4.7]

References

[1] B. V. Limaye: Functional Analysis, New Age International Ltd, New Delhi, 1996.
[2] G. Bachman and L. Narici: Functional Analysis; Academic Press, NY; 1970
[3] J. B. Conway: Functional Analysis; Narosa Pub House, New Delhi; 1978
[4] J. Dieudonne: Foundations of Modern analysis; Academic Press; 1969
[5] W. Dunford and J. Schwartz: Linear Operators - Part 1: General Theory; John Wiley \& Sons; 1958
[6] Kolmogorov and S.V. Fomin: Elements of the Theory of Functions and Functional Analysis (English translation); Graylock Press, Rochaster NY; 1972
[7] E. Kreyszig: Introductory Functional Analysis with applications; John Wiley \& Sons; 1978
[8] F. Riesz and B. Nagy: Functional analysis; Frederick Unger NY; 1955
[9] W. Rudin: Functional Analysis; TMH edition; 1978
[10] W. Rudin: Real and Complex Analysis(3rd Edn.); McGraw-Hill; 1987

FMTH3C14: PDE AND INTEGRAL EQUATIONS

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Learn a technique to solve first order PDE and analyse the solution to get information about the parameters involved in the model
CO 2	Learn explicit representations of solutions of three important classes of PDE Heat equations Laplace equation and wave equation for initial value problems
CO 3	Get an idea about Integral equations
CO 4	Learn the relation between Integral and differential Equations

TEXT 1: AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS, YEHUDA PINCHOVER AND JACOB RUBINSTEIN, Cambridge University Press

TEXT 2: HILDEBRAND, F.B., METHODS OF APPLIED MATHEMATICS (2nd Edn.), Prentice-Hall of India, New Delhi, 1972.

Module 1

First-order equations: Introduction, Quasilinear equations, The method of characteristics, Examples of the characteristics method, The existence and uniqueness theorem, The Lagrange method, Conservation laws and shock waves, The eikonal equation, General nonlinear equations, Exercises.
Second-order linear equations in two independent variables: Introduction, Classification, Canonical form of hyperbolic equations, Canonical form of parabolic equations, Canonical form of elliptic equations, Exercises
The one-dimensional wave equation: Introduction, Canonical form and general solution, The Cauchy problem and D'Alemberts formula, Domain of dependence and region of influence, The Cauchy problem for the nonhomogeneous wave equation, Exercises
[Chapter 1: sections 2.1 to 2.10; Chapter 3: sections 3.1 to 3.6 , Chapter 4: sections 4.1 to 4.6]

Module 2

The method of separation of variables: Introduction, Heat equation: homogeneous boundary condition, Separation of variables for the wave equation, Separation of variables for nonhomogeneous equations, The energy method and uniqueness, Further applications of the heat equation, Exercises
Elliptic equations: Introduction, Basic properties of elliptic problems, The maximum principle, Applications of the maximum principle, Greens identities, The maximum principle for the heat equation, Separation of variables for elliptic problems, Poissons formula, Exercises
Greens functions and integral representations: Introduction, Greens function for Dirichlet problem in the plane, Neumanns function in the plane, The heat kernel, Exercises
[Chapter 5: sections 5.1 to 5.7; Chapter 7: sections 7.1 to 7.9; Chapter 8: sections 8.1 to 8.5]

Module 3

Integral Equations: Introduction, Relations between differential and integral equations, The Green's functions, Fredholom equations with separable kernels, Illustrative examples, Hilbert- Schmidt Theory, Iterative methods for solving Equations of the second kind. The

Newmann Series, Fredholm Theory
[Sections 3.1 3.3, 3.63 .11 from the Text 2]

References

[1] Amaranath T.:Partial Differential Equations, Narosa, New Delhi, 1997.
[2] A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd, New Delhi; 1990
[3] E.A. Coddington: An Introduction to Ordinary Differential Equtions Printice Hall of India ,New Delhi; 1974
[4] R. Courant and D.Hilbert: Methods of Mathematical Physics-Vol I; Wiley Eastern Reprint; 1975
[5] P. Hartman: Ordinary Differential Equations; John Wiley \& Sons; 1964
[6] F. John: Partial Differential Equations; Narosa Pub House New Delhi; 1986
[7] Phoolan Prasad Renuka Ravindran: Partial Differential Equations; Wiley Eastern Ltd, New Delhi; 1985
[8] L.S. Pontriyagin: A course in ordinary Differential Equations; Hindustan Pub. Cor-poration, Delhi; 1967
[9] I. Sneddon: Elements of Partial Differential Equations; McGraw-Hill International Edn.; 1957

SEMESTER 3
 ELECTIVES

FMTH3E01: CODING THEORY

No. of Credits: 3
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO1	The basics of coding theory.
CO2	Learn to detect and correct the error patterns.
CO 3	Learn to implement the fundamental concepts in linear algebra to coding theory
CO 4	Understand about different types of coding and decoding methods and develop the problem solving ability.
CO 5	Attain the skills to represent cyclic codes in terms of polynomials

TEXT: D.J. Hoff man, Coding Theory: The Essentials, Mareel Dekker Inc, 1991

Module 1

Detecting and correcting error patterns, Information rate, the effects of error detection and correction, finding the most likely code word transmitted, weight and distance, MLD, Error detecting and correcting codes. linear codes, bases for $\mathrm{C}=\langle\mathrm{S}\rangle$ and $\mathrm{C} \downarrow$, generating and parity cheek matrices, equivalent codes, distance of linear code, MLD for a linear code, reliability of IMLD for linear codes
[Chapter 1 \& Chapter 2]
Module 2
Perfect codes, hamming code, Extended code, Golay code and extended Golay code, Red Hulles codes
[Chapter 3: Sections 1 to 8]

Module 3

Cyclic linear codes, polynomial encoding and decoding, dual cyclic codes, BCH linear codes, Cyclic Hamming code, Decoding 2 error correcting BCH codes
[Chapter 4 and Appendix A of the chapter, Chapter 5]

References

[1] E.R. Berlekamp: Algebraic coding theory, Mc Graw Hill, 1968
[2] P.J. Cameron and J.H. Van Lint: Fundamentals of Wavelets Theory Algorithms and Applications, John Wiley and Sons, Newyork., 1999.
[3] Yves Nievergelt: Graphs, codes and designs, CUP.
[4] H. Hill : A first Course in Coding Theory, OUP, 1986.

FMTH3E02: CRYPTOGRAPHY

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO 1	Understand the fundamentals of cryptography and cryptanalysis
CO 2	Acquire a knowledge of Claude Shanon's ideas to cryptography, including the concepts of perfect secrecy and the use of information theory to cryptography
CO 3	Learn to use substitution -permutation networks as a mathematical model to introduce many of theconcepts of modern block cipher design and analysis including differential and linear ryptoanalysis
CO 4	Familiarize different cryptographic hash functions and their application to the construction of message authentication codes

TEXT: Douglas R. Stinson, Cryptography Theory and Practice, Chapman \& Hall, 2nd Edition.

Module 1

Classical Cryptography: Some Simple Cryptosystems, Shift Cipher, Substitution Cipher, Affine Cipher, Vigenere Cipher, Hill Cipher, Permutation Cipher, Stream Ciphers. Cryptanalysis of the Affine, Substitution, Vigenere, Hill and LFSR Stream Cipher.

Module 2

Shannons Theory:- Elementary Probability Theory, Perfect Secrecy, Entropy, Huffman Encodings, Properties of Entropy, Spurious Keys and Unicity Distance, Product Cryptosystem.

Module 3

Block Ciphers: Substitution Permutation Networks, Linear Cryptanalysis, Differential Cryptanalysis , Data Encryption Standard (DES), Advanced Encryption Standard (AES). Cryptographic Hash Functions: Hash Functions and Data integrity, Security of Hash Functions, iterated hash functions- MD5, SHA 1, Message Authentication Codes, Unconditionally Secure MAC s.
[Chapter 1 : Section 1.1(1.1.1 to 1.1.7), Section 1.2 (1.2.1 to 1.2.5) ; Chapter 2 : Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 ; Chapter 3 : Sections 3.1, 3.2, 3.3(3.3.1 to 3.3.3), Sect.3.4, Sect. 3.5(3.5.1,3.5.2), Sect.3.6(3.6.1, 3.6.2); Chapter 4 : Sections 4.1, 4.2 (4.2 .1 to 4.2.3), Section 4.3 (4.3.1, 4.3.2), Section 4.4(4.4.1, 4.4.2), Section 4.5 (4.5.1, 4.5.2)]

References

[1] Jeff rey Hoffstein: Jill Pipher, Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer International Edition.
[2] H. Deffs \& H. Knebl: Introduction to Cryptography, Springer Verlag, 2002.
[3] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handbook of Applied Cryptography, CRC Press, 1996.
[4] William Stallings: Cryptography and Network Security Principles and Practice, Third Edition, Prentice-hall India, 2003.

FMTH3E03: MEASURE AND INTEGRATION

No. of Credits: 3
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO1	Learn how a measure will be helpful to generalize the concept of an integral
CO2	Learn how a smallest sigma algebra containing all open sets be constructed on a topological space which ensures the measurability of all continuous function and how a measure called Borel measure is defined on this sigma algebra which ensures the integrability of a huge class of continuous functions
CO3	Understand the regularity properties Borel measures.
CO4	Realize a measure may take real values even complex values.
CO5	Learn to characterize bounded linear functionals on Lp.
CO6	Learn product measure and their completion

TEXT: WALTER RUDIN, REAL AND COMPLEX ANALYSIS (3rd Edn.), Mc.Graw- Hill International Edn., New Delhi, 1987.

Module 1

The concept of measurability, Simple functions, Elementary properties of measures, Arithmetic in [0 , of Integration of Positive Functions, Integration of Complex Functions, The Role Played by Sets of Measure zero, Topological Preliminaries, The Riesz Representation Theorem.
(Chap. 1, Sections : 1.2 to 1.41 Chap. 2, Sections : 2.3 to 2.14)

Module 2

Regularity Properties of Borel Measures, Lebesgue Measure, Continuity Properties of Measurable Functions. Total Variation, Absolute Continuity, Consequences of Radon Nikodym Theorem.
(Chap. 2, Sections : 2.15 to 2.25 Chap. 6, Sections : 6.1 to 6.14)

$$
\text { Module } 3
$$

Bounded Linear Functionals on L^{P}, The Riesz Representation Theorem, Measurability on Cartesian Products, Product Measures, The Fubini Theorem, Completion of Product Measures.
(Chap. 6, Sections : 6.15 to 6.19 , Chap. 8, Sections : 8.1 to 8.11)

References

[1] P.R. Halmos : Measure Theory, Narosa Pub. House New Delhi (1981) Second Reprint
[2] H.L. Roydon : Real Analysis, Macmillan International Edition (1988) Third Edition
[3] E.Hewitt \& K. Stromberg : Real and Abstract Analysis, Narosa Pub. House New Delhi (1978)
[4] A.E.Taylor: General Theory of Functions and Integration, Blaidsell Publishing Co NY (1965)
[5] G.De Barra : Measure Theory and Integration, Wiley Eastern Ltd. Bangalore (1981)

FMTH3E04: PROBABILITY THEORY

No. of Credits: 3
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO1	Understand the concept of random variables, probability and distribution function of a random variable
CO2	Apply the knowledge of convergence a sequence of random variables almost surely, in probability and distribution
CO3	Apply the knowledge of central limit theorem in relevant situations
CO4	Develop problem solving techniques to solve real world problems
CO5	Able to translate real world problems into probability models
CO6	Evaluate and apply moments and characteristic functions and understand the concept of inequalities

TEXT: Probability Essentials (Second Edition), By Jean Jacod, Philip Protter, Springer- Verlag Berlin Heidelberg 2004.

Module 1

Axioms of Probability, Conditional Probability and Independence, Probabilities on a Finite or Countable Space, Random Variables on a Countable Space, Construction of a Probability Measure, Construction of a Probability Measure on \mathbb{R}, Random Variables, Integration with respect to a Probability Measure
(Chapters: 2, 3, 4, 5, 6, 7, 8, 9)

Module 2

Independent Random Variables, Probability Distribution on \mathbb{R}, Probability Distribution on \mathbb{R}^{n}, Characteristic Functions, Properties of Characteristic Functions, Sums of Independent Random Variables
(Chapters: 10, 11, 12, 13, 14, 15)

Module 3

Gaussian Random Variables, Convergence of Random Variables, Weak Convergence, Weak Convergence and Characteristic Functions, The Laws of Large Numbers, The Central limit Theorem
(Chapters: 16, 17, 18, 19, 20, 21)

References

[1] B.R. Bhat: MODERN PROBABILITY THEORY (Second Edn.) Wiley Eastern Lim-ited, Delhi (1988)
[2] Vijay K. Rohatgi and A.K. MD. Ehsanes Saleh: An Introduction to Probability Theory and Statistics (Second Edition), John Wiley Sons Inc. New York
[3] K.L. Chung: Elementary Probability Theory with Stochastic Processes Narosa Pub House, New Delhi (1980)
[4] W.E.Feller: An Introduction to Probability Theory and its Applications Vols I \& II-John Wiley \& Sons, (1968) and (1971)
[5] Rukmangadachari E.: Probability and Statistics, Pearson (2012)
[6] Robert V Hogg, Allen Craig \& Joseph W McKean: Introduction to Mathematical Statistics (Sixth Edn.), Pearson 2005.

FMTH3E05: GRAPH THEORY

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO 1	Learn different types of graphs
CO 2	Learn the concept matching in graphs and related results.
CO 3	Understand what is meant by coloring
CO 4	Learn Planar Graphs

TEXT: J.A. Bondy and U.S.R.Murty : Graph Theory with applications. Macmillan

Module 1

Basic concepts of Graph. Trees, Cut edges and Bonds, Cut vertices, Cayleys Formula, The Connector Problem, Connectivity, Blocks, Construction of Reliable Communication Networks, Euler Tours, Hamilton Cycles, The Chinese Postman Problem, The Travelling Salesman Problem.

Module 2

Matchings, Matchings and Coverings in Bipartite Graphs, Perfect Matchings, The Personnel Assignment Problem, Edge Chromatic Number, Vizings Theorem, The Timetabling Problem, Independent Sets, Ramseys Theorem

Module 3

Vertex Colouring-Chromatic Number, Brooks Theorem, Chromatic Polynomial, Girth and Chromatic Number, A Storage Problem, Plane and Planar Graphs, Dual Graphs, Eulers Formula, Bridges, Kuratowskis Theorem, The Five-Colour Theorem, Directed Graphs, Directed Paths, Directed Cycles.
[Chapter 2 Sections 2.1(Definitions \& Statements only), 2.2, 2.3, 2.4, 2.5; Chapter 3 Sections 3.1, 3.2, 3.3; Chapter 4 Sections 4.1(Definitions \& Statements only), 4.2, 4.3, 4.4; Chapter 5 Sections 5.1, 5.2, 5.3, 5.4; Chapter 6 Sections 6.1,6.2,6.3; Chapter 7 Sections 7.1,7.2; Chapter 8 Sections 8.1, 8.2, 8.4, 8.5, 8.6; Chapter 9 Sections (9.1,9.2,9.3 De nitions \& Statements only), 9.4, 9.5, 9.6; Chapter 10 Sections 10.1, 10.2, 10.3.

References

[1] F. Harary : Graph Theory, Narosa publishers, Reprint 2013.
[2] Geir Agnarsson, Raymond Greenlaw: Graph Theory Modelling, Applications and Algorithms, Pearson Printice Hall, 2007.
[3] John Clark and Derek Allan Holton : A First look at Graph Theory, World Scienti c (Singapore) in 1991 and Allied Publishers (India) in 1995
[4] R. Balakrishnan \& K. Ranganathan : A Text Book of Graph Theory, Springer Verlag, 2nd edition 2012.

Semester 4

FMTH4C15: ADVANCED FUNCTIONAL ANALYSIS

No. of Credits: 4
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Understand the notions of Fredholm theory of compact Operators and their properties
CO 2	Apply the theory to understand and solve some problems of integral equations at an appropriate level of difficulty
CO 3	Describe the construction of the spectral integral.
CO 4	Recognize the fundamentals of Banach spaces and Banach Algebras

Text : YULI EIDELMAN, VITALI MILMAN \& ANTONIS TSOLOMITIS; FUNCTIONAL ANALYSIS AN INTRODUCTION; AMS, Providence, Rhode Island, 2004.

Module 1

Spectrum, Fredholm Theory of Compact operators: Classification of spectrum, Fredholm Theory of Compact operators.

Self adjoint operators: General properties, Self adjoint compact operators, spectraltheory, Minimax principle, Applications to integral operators.
[Chapter 5; Sections 5.1, 5.2; Chapter 6; Sections 6.1, 6.2]

Module 2

Order in the space of self adjoint operators, properties of the ordering; Projection operators; properties of projection in linear spaces, Orthoprojections.

Functions of Operators; spectral decomposition: Spectral decomposition, The main inequality, Construction of the spectral integral, Hilbert Theorem [Chapter 6; Sections 6.3- 6.4, Chapter 7, sections 7.1, 7.2 up to and including statement of Theorem 7.2.1]

Module 3

The fundamental theorems and the basic methods: Auxiliary results, The Banach open mapping Theorem, The closed graph Theorem, The Banach- Steinhaus theorem, Bases in Banach spaces, Linear functionals; the Hahn Banach theorem, Separation of Convex sets.

Banach Algebras: Preliminaries, Gelfand's theorem on maximal ideals
[Chapter 9 Sections 9.1-9.7; Chapter 10, Sections 10.1, 10.2]

References

[1] B. V. Limaye: Functional Analysis, New Age International Ltd, New Delhi, 1996.
[2] R. Bhatia: Notes on Functional Analysis TRIM series, Hindustan Book Agency
[3] Kesavan S: Functional Analysis TRIM series, Hindustan Book Agency
[4] S David Promislow: A First Course in Functional Analysis, John wiley \& Sons, INC., (2008)
[5] Sunder V.S: Functional Analysis TRIM Series, Hindustan Book Agency
[6] George Bachman \&LawrenceNarici: Functional Analysis Academic Press, NY (1970)
[7] Kolmogorov and Fomin S.V: Elements of the Theory of Functions and Functional Analysis. English Translation, Graylock, Press Rochaster NY (1972)
[8] W.DunfordandJ.Schwartz: Linear Operators Part1,GeneralTheory John Wiley \& Sons (1958)
[9] E.Kreyszig: Introductory Functional Analysis with Applications John Wiley \& Sons (1978)
[10] F. Riesz and B. Nagy: Functional Analysis Frederick Unger NY (1955)
[11] J.B.Conway: Functional Analysi Narosa Pub House New Delhi (1978)
[12] Walter Rudin: Functional Analysis TMH edition (1978)
[13] Walter Rudin: Introduction to Real and Complex Analysis TMH edition (1975)
[14] J.Dieudonne: Foundations of Modern Analysis Academic Press (1969)

SEMESTER 4 ELECTIVES

FMTH4E06: ADVANCED COMPLEX ANALYSIS

No. of Credits: 3
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Get a deep knowledge about the space of continuous functions from an open set in the complex plane to a region of the complex plane
CO 2	Learn a technique to extend the domain over which a complex analytic function is defined
CO 3	Understand that there is a unique conformal map f of the unit disk onto a simply connected domain of the extended complex plane such that $\mathrm{f}(0)$ and arg $\mathrm{f}^{\prime}(0)$ take given values
CO 4	Express some functions as infinite series or products

TEXT 1: JOHN B. CONWAY, FUNCTIONS OF ONE COMPLEX VARIABLE (2nd Edn.), Springer International Student Edition, 1973

Module 1

The Space of continuous functions $\mathrm{C}(\mathrm{G} ; \Omega$, Spaces of Analytic functions, Spaces of meromorphic functions, The Riemann Mapping theorem, Weierstrass Factorization Theorem [Chapter. VII: Sections 1, 2, 3,4 and 5]

Module 2

Factorization of the sine function, Gamma function, The Riemann Zeta function, Runge's theorem, Simple connectedness
[Chapt. VII: Sections 6, 7 and 8, Chapter VIII Sections 1 and 2]

Module 3

Mittage - Leffler's Theorem, Schwarz reflexion principle, Analytic continuation along a path, Monotromy theorem, Jensen's formula, The Genus and order of an entire function, Statement of Hadamards factorization theorem
[Chapt. VIII: Section 3, Chapter IX sections 1,2 and 3, Chapter XI sections 1, 2, Section 3 Statement of Hadamards factorization theorem only]

References

[1] Cartan H: Elementary Theory of Analytic Functions of one or Several Variables, AddisonWesley Pub. Co. (1973)
[2] Conway J.B: Functions of One Complex Variable, Narosa Pub. Co, New Delhi (1973)
[3] Moore T.O. \& Hadlock E.H: Complex Analysis, Series in Pure Mathematics - Vol. 9. World Scienti c, (1991)
[4] Pennisi L: Elements of Complex Variables, Holf, Rinehart \& Winston, 2nd Edn. (1976)
[5] Rudin W: Real and Complex Analysis, 3rd Edn. Mc Graw - Hill International Edn. (1987)
[6] Silverman H: Compex Variables, Houghton Mi in Co. Boston (1975)
[7] Remmert R: Theory of Complex Functions, UTM, Springer- verlag, NY, (1991)

FMTH4E07: ALGEBRAIC NUMBER THEORY

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO 1	Understand that abstract algebra may be used to solve certain problems in Number Theory
CO 2	Learn about arithmetic of algebraic number fields
CO 3	Understand that the familiar unique factorization property may fail in the case of ring of integers of some quadratic fields while a unique factorization theory holds for ideals of ring of integers of a number field
CO 4	Learn finiteness of class numbers CO 5Understand that the notions of algebraic numbers may be applied to prove Kummer's special case of Fermat's Last Theorem

TEXT: I. N. STEWART \& D.O. TALL, ALGEBRAIC NUMBER THEORY, (2nd Edn.), Chapman \& Hall, (1987)

Module 1

Symmetric polynomials, Modules, Free abelian groups, Algebraic Numbers, Conjugates and Discriminants, Algebraic Integers, Integral Bases, Norms and Traces, Rings of Integers, Quadratic Fields, Cyclotomic Fields.
[Chapter1, Sections 1.4 to 1.6; Chapter 2, Sections 2.1 to 2.6 ; Chapter 3, Sections 3.1 and 3.2 from the text]

Module 2

Historical background, Trivial Factorizations, Factorization into Irreducibles, Examples of Nonunique Factorization into Irreducibles, Prime Factorization, Euclidean Domains, Eucidean Quadratic fields Ideals Historical background, Prime Factorization of Ideals, The norm of an ideal
[Chapter 4, Sections 4.1 to 4.7, Chapter 5, Sections 5.1 to 5.3.]

Module 3

Lattices, The Quotient Torus, Minkowski theorem, The Space Lst, The Class-Group An Existence Theorem, Finiteness of the Class-Group, Factorization of a Rational Prime, Fermats Last Theorem Some history, Elementary Considerations, Kummers Lemma, Kummers Theorem.
[Chapter 6, Chapter 7, Section 7.1 Chapter 8, Chapter 9, Sections 9.1 to 9.3, Chapter 10. Section 10.1, Chapter 11: 11.1 to 11.4.]

References

[1] P. Samuel : Theory of Algebraic Numbers, Herman Paris Houghton Mi in, NY, (1975)
[2] S. Lang : Algebraic Number Theory, Addison Wesley Pub Co., Reading, Mass, (1970)
[3] bf D. Marcus : Number Fields, Universitext, Springer Verlag, NY, (1976)
[4] 4T.I.FR. Pamphlet No: 4 : Algebraic Number Theory (Bombay, 1966)
[5] Harvey Cohn : Advanced Number Theory, Dover Publications Inc., NY, (1980)
[6] Andre Weil : Basic Number Theory, (3rd Edn.), Springer Verlag, NY, (1974)
[7] G.H. Hardy and E.M. Wright : An Introduction to the Theory of Numbers, Oxford University Press.
[8] Z.I. Borevich \& I.R.Shafarevich : Number Theory, Academic Press, NY 1966.
[9] Esmonde \& Ram Murthy : Problems in Algebraic Number Theory, Springer Verlag 2000.

FMTH4E08: ALGEBRAIC TOPOLOGY

No. of Credits: 3
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO1	Learn how basic geometric structures may be studied by transforming them into algebraic questions
CO2	Learn basics of homology theory and apply it to get a generalization of Eulers formula to a general polyhedral.
CO 3	Learn to associate a group called fundamental group to every topological space.
CO 4	Learn that two objects that can be deformed into one another will have the same homology group and that homemorphic spaces have isomorphic fundamental groups
CO 5	Learn Brouwer fixed point theorem and related results

TEXT: FRED H. CROOM., BASIC CONCEPTS OF ALGEBRAIC TOPOLOGY, UTM, Springer - Verlag, NY, 1978.
(Pre requisites : Fundamentals of group theory and Topology)

$$
\text { Module } 1
$$

Geometric Complexes and Polyhedra: Introduction. Examples, Geometric Complexes and Polyhedra, Orientation of geometric complexes.

Simplicial Homology Groups: Chains, cycles, Boundaries and homology groups, Examples of homology groups; The structure of homology groups;
[Chapter 1: Sections 1.1 to 1.4; Chapter 2: Sections 2.1 to 2.3 from the text]

Module 2

Simplicial Homology Groups (Contd.): The Euler Poincare's Theorem; Pseudomanifolds and the homology groups of S_{n} :

Simplicial Approximation: Introduction, Simplicial approximation, Induced homomorphisms on the Homology groups, The Brouwer fixed point theorem and related results
[Chapter 2: Sections 2.4, 2.5; Chapter 3: Sections 3.1 to 3.4 from the text]

Module 3

The Fundamental Group: Introduction, Homotopic Paths and the Fundamental Group, The Covering Homotopy Property for S1, Examples of Fundamental Groups.
[Chapter 4: Sections 4.1 to 4.4 from the text]

References

[1] Eilenberg S, Steenrod N.: Foundations of Algebraic Topology; Princeton Univ. Press; 1952
[2] S.T. Hu: Homology Theory; Holden-Day; 1965
[3] Massey W.S.: Algebraic Topology : An Introduction; Springer Verlag NY; 1977
[4] C.T.C. Wall: A Geometric Introduction to Topology; Addison-Wesley Pub. Co. Reading Mass; 1972

FMTH4E09: COMMUTATIVE ALGEBRA

No. of Credits: 3
No. of hours of Lectures/week: 5

COs	COURSE OUTCOMES
CO 1	Basic properties of commutative rings, ideals and modules over commutative rings,
CO 2	Learn uniqueness theorem for a decomposable ideal.
CO 3	Learn integrally closed domain and valuation ring.
CO 4	Understand the basic theory of Noetherian and Artin Rings

TEXT: ATIYAH M.F., MACKONALD I. G., INTRODUCTION TO COMMUTATIVE

 ALGEBRA, Addison Wesley, NY, 1969.
Module 1

Rings and Ideals, Modules
[Chapters I and II from the text]

Module 2

Rings and Modules of Fractions, Primary Decomposition [Chapters III \& IV from the text]

Module 3

Integral Dependence and Valuation, Chain conditions, Noetherian rings, Artinian rings [Chapters V, VI, VII \& VIII from the text]

References

[1] N. Bourbaki: Commutative Algebra; Paris - Hermann; 1961
[2] D. Burton: A First Course in Rings and Ideals; Addison - Wesley; 1970
[3] N. S. Gopalakrishnan: Commutative Algebra; Oxonian Press; 1984
[4] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987
[5] D. G. Northcott: Ideal Theory; Cambridge University Press; 1953
[6] O. Zariski, P. Samuel: Commutative Algebra- Vols. I \& II; Van Nostrand, Princeton; 1960

FMTH4E10: DIFFERENTIAL GEOMETRY

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO1	Understand how calculus of several variables can be used to develop the geometry of n - dimensional oriented n - surface in $\mathbb{R}^{\mathrm{n}+1}$
CO2	Understand locally n - surfaces and parametrized n - surfaces are the same CO3Develop a knowledge of the Gauss and Weingarten maps and apply them to apply them to describe various properties of surfaces

TEXT: J.A.THORPE: ELEMENTARY TOPICS IN DIFFERENTIAL GEOMETRY

Module 1

Graphs and Level Set, Vector fields, The Tangent Space, Surfaces, Vector Fields on Surfaces, Orientation. The Gauss Map.
[Chapters : 1,2,3,4,5,6 from the text.]

Module 2

Geodesics, Parallel Transport, The Weingarten Map, Curvature of Plane Curves, Arc Length and Line Integrals.
[Chapters : 7,8,9,10,11 from the text].

Module 3

Curvature of Surfaces, Parametrized Surfaces, Local Equivalence of Surfaces and Parametrized Surfaces.
[Chapters 12,14,15 from the text]

References

[1] W.L. Burke : Applied Differential Geometry, Cambridge University Press (1985)
[2] M. de Carmo : Differential Geometry of Curves and Surfaces, Prentice Hall Inc Englewood Cli s NJ (1976)
[3] V. Grilleman and A. Pollack : Differential Topology, Prentice Hall Inc Englewood Clis NJ (1974)
[4] B. O'Neil : Elementary Differential Geometry, Academic Press NY (1966)
[5] M. Spivak : A Comprehensive Introduction to Differential, Geometry, (Volumes 1 to 5), Publish or Perish, Boston $(1970,75)$
[6] R. Millmen and G. Parker : Elements of Differential Geometry, Prentice Hall Inc Englewood Cli s NJ (1977)
[7] I. Singer and J.A. Thorpe : Lecture Notes on Elementary Topology and Geometry, UTM, Springer Verlag, NY (1967)

FMTH4E11: FLUID DYNAMICS

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO 1	Learn the concept of Equation of Motion and how they relate the dynamics of flow to the pressure and density fields
CO 2	Learn the concepts of streaming motions and Aerofoils
CO 3	Learn the concepts of Sources and Sinks
CO 4	Get an idea of Stream function and its uses to plot stream lines which represent trajectories of particles in a steady flow

TEXT : L.M. MILNE-THOMSON, THEORETICAL HYDRODYNAMICS, (Fifth Edi-tion)
Mac Millan Press, London, 1979.

Module 1

EQUATIONS OF MOTION : Differentiation w.r.t. the time, The equation of continuity Boundary condition (Kinematical and Physical), Rate of change of linear momentum, The equation of motion of an invicid fluid, Conservative forces, Steady motion, The energy equation, Rate of change of circulation, Vortex motion, Permanence of vorticity, Pressure equation, Connectivity, Acyclic and cyclic irrotational motion, Kinetic energy of liquid, Kelvins minimum energy theorem. TWO-DIMENSIONAL MOTION : Motion in two-dimensions, Intrinsic expression for the vorticity; The rate of change of vorticity; Intrinsic equations of steady motion; Stream function; Velocity derived from the stream-function; Rankine's method; The stream function of a uniform stream; Vector expression for velocity and vorticity; Equation satisfied by stream function; The pressure equation; Stagnation points; The velocity potential of a liquid; The equation satisfied by the velocity potential.
[Chapter III: Sections 3.10, 3.20, 3.30, 3.31, 3.40, 3.41, 3.43, 3.45, 3.50, 3.51, 3.52, 3.53, 3.60, 3.70, 3.71, 3.72, 3.73. Chapter IV : All Sections.]

Module 2

STREAMING MOTIONS : Complex potential; The complex velocity stagnation points, The speed, The equations of the streamlines, The circle theorem, Streaming motion past a circular cylinder; The dividing streamline, The pressure distribution on the cylinder,
Cavitation, Rigid boundaries and the circle theorem, The Joukowski transformation, Theorem of Blasius. AEROFOILS: Circulation about a circular cylinder, The circulation between concentric cylinders, Streaming and circulation for a circular cylinder, The aero foil, Further investigations of the Joukowski transformation Geometrical construction for the transformation, The theorem of Kutta and Joukowski.
[Chaper VI : Sections 6.0, 6.01,
6.02, 6.03, 6.05, 6.21, 6.22, 6.23, 6.24, 6.25, 6.30, 6.41. Chapter VII: Sections 7.10, 7.11, 7.12, 7.20, 7.30, 7.31, 7.45.]

Module 3

SOURCES AND SINKS: Two dimensional sources, The complex potential for a simple source, Combination of sources and streams, Source and sink of equal strengths Doublet, Source and equal sink in a stream, The method of images, Effect on a wall of a source parallel to the wall, General method for images in a plane, Image of a doublet in a plane, Sources in conformal transformation Source in an angle between two walls, Source outside a circular cylinder, The force exerted on a circular cylinder by a source. STKOKES' STREAM FUNCTION: Axisymmetrical motions Stokes stream function, Simple source, Uniform stream, Source in a uniform stream, Finite line source, Airship forms, Source and equal sink - Doublet; Rankin's solids.
[Chapter VIII. Sections 8.10, 8.12, 8.20, 8.22, 8.23, 8.30, 8.40, 8.41, 8.42, 8.43, 8.50, 8.51, 8.60, 8.61, 8.62. Chapter XVI. Sections 16.0, 16.1, 16.20, 16.22, 16.23, 16.24, 16.25, 16.26, 16.27]

References

[1] Von Mises and K.O. Friedrichs : Fluid Dynamics, Springer International Edition. Reprint, (1988)
[2] James EA John : Introduction to Fluid Mechanics (2nd Edn.), Prentice Hall of India ,Delhi,(1983).
[3] Chorlten : Text Book of Fluid Dynamics, CBS Publishers, Delhi 1985
[4] A. R. Patterson : A First Course in Fluid Dynamics, Cambridge University Press 1987

FMTH4E12: Computer Oriented Numerical Analysis

No. of Credits: 3
No. of hours of Lectures/week : 5

Programming Language	$:$	C++
Text Books	$:$	1. Object Oriented Programming in Turbo
		C++ By Robert Lafore (Galgotia
	Publication Pvt. Ltd., Ansari Road, New	
	Delhi)	

2. Computer Oriented Numerical Methods - V. Rajaraman, Prentice Hall of India, New Delhi ($3^{\text {rd }}$ Edition)

THEORY

UNIT I

A quick view on preliminaries of computers, programming languages, Algorithms and flow charts.
(Following lessons as in the Tex Book No. 1 mainly focusing on)

Chapter 3	C++ Programming Basics: Input/Output statements - escape sequences - endl and setw manipulatorsvariables and constants (int, long, float, double, long double and char) Operators (Arithmetic, remainder, increment) - Library functions.
Chapter 4	Loops and Decisions: Relational operators - For, While, Do loops - if, if else, nested if else switch statements - conditional operator - logical operators - other control statements like break, continue, goto.
Chapter 5	Structures: (A quick view) Defining structures, accessing structure members, other features of structures, structures within structures.
Chapter 6	Functions: Declarations and calling of functions - passing of constants and variables to and fro through functions (by value and by reference) - return statement recursion.
Chapter 8	Arrays: Defining arrays - accessing and initializing arrays-multi dimensional arrays passing of arrays to function - strings and arrays of strings.
Chapter 14	Files and Streams: Streams- String I/O (Reading and Writing strings) - of stream and if stream classes - open function - Redirection of output and input.

UNIT II

(Chapters 1,3,5 of Text No. 2)

Algorithms, Flow chart and C++ Programs for various numerical methods like Gcd of two numbers, Totient function, Fibonacci sequence, finding maximum of numbers, Area of a triangle, sum of a numerical series, polynomial evaluation, Checking a number prime, real root of a transcendal equation (Newton Raphson Method and Bisection Method), Interpolation.

UNIT III

(Chapters 4,5,8,9 of Text No. 2)

Algorithms, C++ Programs and solution for numerical methods like solving simultaneous algebraic equations. Tridiagonal system of equations, Differentiation of tabulated functions, Integration by simpson's rule and Trapezoidal rule, Solving differential equations using Eulers method and Runge Kutta Method, Finding Inverse of Matrix (Gauss elimination technique), Eigen values.

PRACTICALS

The following programs in C++ have to be done on a computer and a record of algorithm, print out of the program and print out of solution as shown by the computer for each program should be maintained. These should be bound together and submitted to the examiners at the time of practical examination.

Sample Programs (Recommended)

1. GCD of two numbers
2. To Check an integer prime
3. Evaluation of Totient Function
4. Writing of Fibonacci sequence
5. Listing of prime numbers
6. Average and maximum of a set of numbers

Programs (Compulsory)

Part A

1. Lagrange Interpolation
2. Newton's Interpolation
3. Newton-Raphson Method
4. Bisection Method
5. Numerical Differentiation
6. Simpson's rule of Integration
7. Trapezoidal rule of integration

Part B

1. Euler's method
2. Runge-Kutta method of order 2
3. Runge - Kutta method of order 4
4. Gauss elimination with pivoting
5. Solving a tridiagonal system of equations
6. Gauss - Seidal iteration
7. Inverse of matrix
8. Eigen value evaluation

REFERENCES

1. SD Conte and Carl De Boor : Elementary Numerical Analysis
2. K. Sankara Rao
3. Carl E Froberg
4. A Ralston
5. John H Mathews
6. Knuth D.E.

7 Herbert Schildt

8 Yashavant P Kanetkar
9 E Balagurusami

10 Schaum Series
(An algorithmic approach) - Third edition Mc Graw Hill book company - New Delhi Numerical Methods for Scientists and Engineers- Prentice hall of India - New Delhi
: Introduction to Numerical Analysis Addison Wesley Pub. Co. $2^{\text {nd }}$ Edition
: A First Course in Numerical Analysis. Mc Graw Hill Book Company
: Numerical methods for Mathematics, Science and Engg. Prentice Hall of India - New Delhi
: The Art of Computer Programming Vol I Fundamental Algorithms Addison Wesley Narosa, New Delhi
: C++: The Complete reference ($3^{\text {rd }}$ edition) Mc Graw-Hill Pub. Co. Ltd. New Delhi
: Let us C++, BPB Publications, New Delhi
: Object Oriented Programming with C++ Tata Mc Graw - Hill Publishing Co. Ltd., New Delhi
: Programming in C++ Tata Mc Graw-Hill Publishing Co. Ltd., New Delhi

FMTH4E13: REPRESENTATION THEORY

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO 1	Learn the concept of G-Modules and commutant algebra.
CO 2	Learn the concepts of orthogonality relations and the finite abelian groups.
CO 3	Learn the concepts of induced representations and normal subgroups

TEXT: Walter Ledermann, Introduction to Group Characters (Second Edition).

Module 1
Introduction, G- modules, Characters, Reducibility, Permutation Representations, Complete reducibility, Schurs lemma, The commutant (endomorphism) algebra.
(Sections: 1.1 to 1.8)

Module 2

Orthogonality relations, the group algebra, the character table, finite abelian groups, the lifting process, linear characters.
(section: 2.1 to 2.6)

Module 3

Induced representations, reciprocity law, the alternating group A5, Normal subgroups, Transitive groups, the symmetric group, induced characters of S_{n}. (Sections: 3.1 to $3.4 \& 4.1$ to 4.3)

References

[1] C. W. Kurtis and I. Reiner: Representation Theory of Finite Groups and Asso-ciative Algebras, John Wiley \& Sons, New York(1962)
[2] Faulton: The Reprsentation Theory of Finite Groups, Lecture Notes in Mathematics, No. 682, Springer 1978.
[3] C. Musli: Reprsentations of Finite Groups, Hindustan Book Agency, New Delhi (1993).
[4] I. Schur: Theory of Group Characters, Academic Press, London (1977).
[5] J.P. Serre: Linear Representation of Finite Groups, Graduate Text in Mathematics, Vol 42, Springer (1977).

FMTH4E14: WAVELET THEORY

No. of Credits: 3
No. of hours of Lectures/week : 5

COs	COURSE OUTCOMES
CO1	Learn the concept of discrete Fourier Transforms and its basic properties.
CO 2	Learn how to construct Wavelets on \mathbb{Z}_{N} and \mathbb{Z}.
CO 3	Learn Wavelets on \mathbb{R} and construction of MRA

TEXT: Michael. W. Frazier, An Introduction to Wavelets through Linear Algebra, Springer, Newyork, 1999.

Module 1

The discrete Fourier transforms: Basic Properties of Discrete Fourier Transforms , Translation invariant Linear Transforms, The Fast Fourier Transforms. Wavelets on Z_{N}.

Construction of wavelets on Z_{N} - The First Stage, Construction of Wavelets on Z_{N} : The Iteration Step.
[Chapter 2: sections 2.1 to 2.3; Chapter 3: sections 3.1 and 3.2]

Module 2

Wavelets on $Z: 1^{2}(Z)$, Complete orthonormal sets in Hilbert spaces , $\mathrm{L}^{2}([-\pi \pi))$ and Fourier series , The Fourier Transform and convolution on $l^{2}(Z)$, First stage Wavelets on Z , Implementation and Examples.
[Chapter 4: sections 4.1 to 4.6 and 4.7]
Module 3
Wavelets on $\mathrm{R}: \mathrm{L}^{2}(\mathrm{R})$ and approximate identities, The Fourier transform on R , Multiresolution analysis and wavelets, Construction of MRA .
[Chapter 5: sections 5.1 to 5.4]

References

[1] C.K. Chui : An introduction to wavelets, Academic Press, 1992
[2] Jaideva. C. Goswami, Andrew K Chan: Fundamentals of Wavelets Theory Al-gorithms and Applications, John Wiley and Sons, Newyork. , 1999.
[3] Yves Nievergelt: Wavelets made easy, Birkhauser, Boston,1999.
[4] G. Bachman, L.Narici and E. Beckenstein : Fourier and wavelet analysis, Springer, 2006.

FMTH4E15: FOURIER ANALYSIS

No. of Credits: 3
No. of hours of Lectures/week : 5

TEXT: FOURIER ANALYSIS AND ITS APPLICATIONS, GERALD B. FOLLAND, AMERICAN MATHEMATICAL SOCIETY, INDIAN EDITION 2010.

Module 1

Some equations of mathematical physics, Linear differential operators, Separation of variables, The Fourier series of a periodic function, A convergence theorem, Derivatives, Integrals and uniform convergence.
[1.1, 1.2, 1.3, 2.1, 2.2, 2.3]

Module 2

Fourier series on intervals, Some applications, Further remarks on Fourier series, Vectors and inner products, Functions and inner products, Convergence and completeness.
[2.4, 2.5, 2.6, 3.1, 3.2, 3.3]

Module 3

More about L^{2} spaces; the dominated convergence theorem, Convolutions, The Fourier transform, Some applications.
[3.4, 7.1, 7.2, 7.3]

References

[1] H. Dym and H.P.McKean: Fourier Series and Integrals, Academic Press, New York, 1972.
[2] G.B.Folland: Real Analysis, John Wiley, New York,1984.
[3] E.M.Stein and G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971.

[^0]: * This Elective is to be selected from the list of elective courses in third semester.
 **These Electives are to be selected from the list of elective courses in fourth semester.

