ST. JOSEPH'S COLLEGE (AUTONOMOUS), DEVAGIRI, KOZHIKODE

(Affiliated to the University of Calicut)

CURRICULUM & SYLLABI

FOR

B.Sc. Applied Mathematics Honours

UNDER FOUR YEARS UNDER GRADUATE PROGRAMME (FYUGP) SYSTEM 2024

(EFFECTIVE FROM 2024 ADMISSION)

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme, a student would:

PO1	Knowledge Acquisition: Demonstrate a profound understanding of knowledge trends and their impact on the chosen discipline of study.
PO2	Communication, Collaboration, Inclusiveness, and Leadership: Become a team player who drives positive change through effective communication, collaborative acumen, transformative leadership, and a dedication to inclusivity.
PO3	Professional Skills: Demonstrate professional skills to navigate diverse career paths with confidence and adaptability.
PO4	Digital Intelligence: Demonstrate proficiency in varied digital and technological tools to understand and interact with the digital world, thus effectively processing complex information.
PO5	Scientific Awareness and Critical Thinking: Emerge as an innovative problem-solver and impactful mediator, applying scientific understanding and critical thinking to address challenges and advance sustainable solutions.
PO6	Human Values, Professional Ethics, and Societal and Environmental Responsibility: Become a responsible leader, characterized by an unwavering commitment to human values, ethical conduct, and a fervent dedication to the well-being of society and the environment.
PO7	Research, Innovation, and Entrepreneurship: Emerge as a researcher and entrepreneurial leader, forging collaborative partnerships with industry, academia, and communities to contribute enduring solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the B.Sc. Applied Mathematics Honours Programme, a student would:

	Programme Specific Outcome (Major)
PSO1	Advanced Mathematical Knowledge: Understand core mathematical abstract concepts/theories and demonstrate a high level of mathematical rigor and logical reasoning
PSO2	Modelling and Problem-Solving Skills: Apply mathematical techniques to solve complex problem situations across various domains and interpret the result, demonstrating critical thinking and analytical skills.
PSO3	Computational Proficiency: Apply mathematical understanding to solve problems and explicitly work out step by step either by self or by software based computational tools.
PSO4	Research Aptitude: Analyse mathematical abstract ideas effectively and present/communicate mathematical arguments and solutions in a clear and coherent manner leading to research in Mathematics
	Programme Specific Outcome (Minor)
PSO5	Mathematics Proficiency: Demonstrate a strong understanding of mathematical principles and problem solving.
PSO6	Interdisciplinary Integration: Integrate Mathematics with relevant disciplines to develop more holistic approaches to solve problems, leading to innovative solutions and advancements in various fields.

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS

						1	1
Sl. No.	Academic Pathway	Major	Minor/ Other Disciplines	Foundation Courses AEC: 4	Internship	Total Credits	Example
				MDC: 3 SEC: 3			
			course has credits	VAC: 3			
				Each course has 3 credits			
1	Single Major (A)	68 (17 course s)	24 (6 courses)	39 (13 courses)	2	133	Major: Applied Mathematics + six courses in different disciplines in different combinations
2	Major (A) with Multiple Disciplin e s (B, C)	68 (17 course s)	12 + 12 (3 + 3 = 6 courses)	39 (13 courses)	2	133	Major: Applied Mathematics + Statistics and Computer Science
3	Major (A) with Minor (B)	68 (17 course s)	24 (6 courses)	39 (13 courses)	2	133	Major: Applied Mathematics Minor: Statistics

IN THE THREE-YEAR PROGRAMME IN FYUGP

4	Major (A) with Vocationa l Minor (B)		24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics Vocational Minor: Data Analysis				
5	Double Major	A: 48	-	12 + 9+9 +9	2	133	Applied Mathematics and				
	(A, B)	s) B: 44 (11	The 24 credits distributed bet 2 MDC, 2 SEC Internship sho credits in Majo 48 + 20 = 68 (1 MDC, 1 SEC Major B. Tot should be 44 + (40% of 133)	ween the two C, 2 VAC and ould be in Ma or A should b nearly 50% o C and 1 VAC s tal credits in	Majors. the njor A. Total e f 133) should be in		Computer Science double major				
	Exit with UG Degree / Proceed to Fourth Year with 133 Credits										

SYLLABUS

(w.e.f. 2024 admission onwards) (FYUGP Regulations 2024) B.Sc. APPLIED MATHEMATICS HONOURS PROGRAMME Course Structure for pathways 1-4

1. Single Major

3. Major with minor

2. Major with multiple minor

Semester	Course Code	Course Title	Total Hours	Hours/ Week	Credits		Marks	
						Internal	external	Total
	AMA1CJ101	Major A-Course 1-Calculus I	45+30	3+2	4	30	70	100
	02	Minor B- Course	45+30	3+2	4	30	70	100
	03	Minor C- Course	45+30	3+2	4	30	70	100
1	04	Ability Enhancement Course 1(P) (E)	30+30 (T+P)	2+2 (T+P)	2+1 (T+P)	30	70	100
	05	Ability Enhancement Course 2 (AL)	45	3	3	25	50	75
	06 Multi-Disciplinary Course 1 (Other Department)		45	3	3	25	50	75
		Total		25	21	25	50	75
	AMA2CJ101	Major A- Course 2—Calculus II	45+30	3+2	4	30	70	100
	02	Minor B-Course 2	75	5	4	30	70	100
	03	Minor C- Course 2	75	5	4	30	70	100
2	04	Ability Enhancement Course 3 (P)(E)	60	4	3	30	70	100
	05	Ability Enhancement Course 4(AL)	30+30	2+2	2+1	25	50	100
	06	Multi-Disciplinary Course 2(Other Department)	45	3	3	25	50	100
		Total		25	21	25	50	100
	AMA3CJ201	Major A- Course 3- Vector Calculus	45+30 (T+P)	3+2	3+1	30	70	100

		Major A- Course 4 – Linear Programming and Application	60	4	4			100
						30	70	
3	03	Minor B-Course 3	45+30	3+2	4	30	70	100

	AMA4CJ203	Major A-Course 5-Linear Algebra	45+30	3+2	4	30	70	100
4	AMA4CJ203	Major A-Course 5-Linear Algebra	45+30	3+2	4	30	70	100
	AMA4CJ204	Major A-Course 6-Differential Equations	45+30	3+2	4	30	70	100
	AMA4CJ205	Major A- Course 7 Real Analysis	45+30	3+2	4	30	70	100
	04	Skill Enhancement Course 1 (P) (E)	30+30	2+2	3	25	50	75
	05	Value-Added Course 2(E)	45	3	3	25	50	75
	06	Value-Added Course 3 (AL)	60	3	3	25	50	75
		Total		25	21			
	AMA5CJ301	Major A-Course 8- Abstract Algebra	45+30	3+2	4	30	70	100
	AMA5CJ302	Major A-Course 9- Object Oriented Programming using C++	45+30	3+2	4	30	70	100
5	AMA5CJ303	Major A-Course 10- Number Theory	60	4	4	30	70	100
		A*-Elective 1	60	5	4	30	70	100
		A*- Elective 2	60	4	4	30	70	100
		Skill Enhancement Course 2	45	3	3	25	50	75
		Total		25	23			
	AMA6CJ304	Major A-Course 11- Numerical Computing Using Python	45+30	3+2	4	30	70	100

	AMA6CJ305	Major A-Course 12- Complex Analysis	60	4	4	30	70	100
	AMA6CJ306	Major A-Course 13 Theory of Equations and Graph Theory	60	4	4	30	70	100
6		A*-Elective3	60	5	4	30	70	100
		A*-Elective 4	60	4	4	30	70	100
	AMA6FS113	Data Science with Python (Skill Enhancement Course 3)	45	3	3	25	50	75
	AMA6CJ349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		25	25			
	Total Cred	its for Three Years		1	133			
	AMA7CJ401	Major A-Course 14- Introduction to Topology	45+30	3+2	3+1	30	70	100
	AMA7CJ402	Major A- Course 15-Advanced Linear Algebra	45+30	3+2	3+1	30	70	100
7	AMA7CJ403	Major A - Course 16 - Cryptography and Automata theory	45+30	3+2	3+1	30	70	100
	AMA7CJ404	Major A – Course 17- Partial differential Equations	45+30	3+2	3+1	30	70	100
	AMA7CJ405	Major A- Course 18 – Advanced Abstract Algebra	45+30	3+2	3+1	30	70	100
		Total		25	20			
	AMA8CJ406	Major A- Course 19 -Introduction to Fractals	45+30	3+2	3+1	30	70	100
	AMA8CJ407	Major A- Course 20 - Fluid dynamics	60	4	4	30	70	100
	AMA8CJ408	Major A- Course 21- Stochastics Processes	60	4	4	30	70	100
		OR (instead of Courses 1)	9 to 21 ii	n Major)				
		Project (in Honours programme)	360*	13*	12	90	210	300
8		OR (instead of Courses 1)	9 to 21 ii	n Major)				
		Project (in Honours with Research programme)	360*	13*	12	90	210	300
		Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100

	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100
	Elective Course 7 in Major / Minor Course 9/ Major Course in any other Discipline	60	4	4	30	70	100
OR (in	stead of Elective Course 7 in Major, in the ca	ase of Ho	onours wit	h Resea	rch Prog	gramme)	
	Research Methodology in Applied Mathematics	60	4	4	30	70	100
	Total		25	24			
	Total Credits for four years	1		177			

Choose any four elective courses (two in fifth and two in sixth semester) from the basket of electives with specialization

ELECTIVE COURSES IN APPLIEDMATHEMATICS WITH SPECIALISATION

Groups	Sl. No.	Course Code	Title	Semester	Total Hrs	Hrs/ Week	credits		Marks	
								Internal	External	Total
1		МАТНЕМАТ	ICAL COMPUT	TING						
	1	AMA5EJ301 (1)	Mathematical Foundations of Computing	5	60	4	4	30	70	100
	2	AMA5EJ302 (1)	Data Structures	5	60	4	4	30	70	100
	3	AMA6EJ301 (1)	Numerical Analysis	6	60	4	4	30	70	100
	4	AMA6EJ302 (1)	Mathematics for Digital Images	6	60	4	4	30	70	100

2			DATA SCIENCE*								
	1	AMA5EJ303 (2)	Convex Optimization	5	60	4	4	30	70	100	
	2	AMA5EJ304 (2)	Applied Probability	5	60	4	4	30	70	100	
	3	AMA6EJ303 (2)	Machine Learning I	6	60	4	4	30	70	100	
	4	AMA6EJ304 (2)	Machine Learning II	6	60	4	4	30	70	100	

3				APPLI	ED ALG	GEBRA				
	1	AMA5EJ305 (3)	Graph Theory and application	5	60	4	4	30	70	100
	2	AMA5EJ3026 (3)	Lattice Theory	5	60	4	4	30	70	100
	3	AMA6EJ305 (3)	Fuzzy Mathematics	6	60	4	4	30	70	100
	4	AMA6EJ306 (3)	Coding Theory	6	60	4	4	30	70	100
				OPT	IMIZAT	TION				
	1	AMA5EJ307 (4)	Financial Mathematics	5	60	4	4	30	70	100

4	2	AMA5EJ308 (4)	Mathematical Modeling	5	60	4	4	30	70	100
	3	AMA6EJ307 (4)	Mathematical Economics	6	60	4	4	30	70	100
	4	AMA6EJ308 (4)	Operation Research	6	60	4	4	30	70	100
	ACTUARIAL SCIENCES									
5	1	AMA5EJ309 (5)	Introduction to Actuarial Science	5	60	4	4	30	70	100
	2	AMA5EJ310 (5)	Mathematics of Finance I	5	60	4	4	30	70	100
	3	AMA6EJ309 (5)	Principles of Insurance	6	60	4	4	30	70	100
	4	AMA6EJ310 (5)	Mathematics of Finance II	6	60	4	4	30	70	100

Elective course for VIII semester

SI.	Course code	Title	Total	Hrs./	Credits		Marks	
No.			Hrs.	Week		Internal	Externa 1	Total
1	AMA8EJ401	Analytical Number Theory	60	4	4	30	70	100
2	AMA8EJ402	Numerical Methods for Partial Differential Equations	60	4	4	30	70	100
3	AMA8EJ403	Differential Equations and Dynamical System	60	4	4	30	70	100
4	AMA8EJ404	Relativity and Cosmology	60	4	4	30	70	100
5	AMA8EJ405	Elasticity	60	4	4	30	70	100
6	AMA8EJ406	Discrete Time Control System	60	4	4	30	70	100
7	AMA8EJ407	Differential Geometry	60	4	4	30	70	100
8	AMA8EJ408	Rings & Modules	60	4	4	30	70	100
9	AMA8EJ409	Mathematics of Wavelets	60	4	4	30	70	100
10	AMA8EJ410	Functional analysis	60	4	4	30	70	100

GROUPING OF MINORS FOR APPLIED MATHEMATICS

1			Minor Grou	ıp I- Disc	rete Ma	athema	tics			
	1		Mathematical Logic, Set Theory and Combinatorics	1	60	4	4	30	70	100
	2	AMA2MN104	Graph theory and Automata	2	60	4	4	30	70	100
	3		Boolean Algebra and System of Equations	3	60	4	4	30	70	100
2			Minor Grou	ıp II – Co	orporate	e Matho	ematics			
	1		COMMERCIAL ARITHMETIC	1	60	4	4	30	70	100
	2		BUSINESS MATHEMATICS	2	60	4	4	30	70	100
	3		MANAGEMENT SCIENCE	3	60	4	4	30	70	100

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN APPLIED MATHEMATICS

Semester	Course code	Course title	Total Hrs	Hrs/week			Marks	
					Credits	Internal	External	Total
1	AMA1FM105(1)	Multi-Disciplinary Course 1 - Matrices and Basics of Probability theory	45	3	3	25	50	75
1	AMA1FM105(2)	Multi-Disciplinary Course 2 Mathematics for Competitive Exams - Part I	45	3	3	25	50	75
2	AMA2FM106(2)	Multi-Disciplinary Course 4 – Mathematics for Competitive Exams - Part II	45	3	3	25	50	75
1	AMA5FS112	Skill Enhancement Course 2 - Mathematical Type Setting System - LaTeX	45	3	3	25	50	75
2	AMA6FS113	Skill Enhancement Course 3 - Data Science with Python	45	3	3	25	50	75

Semester	Major Courses	Minor Courses	General Foundation Courses	Internship/ Project	Total
1	4	4+4	3 + 3 + 3	-	21
2	4	4+4	3 + 3 + 3	-	21
3	4+4	4+4	3 + 3	-	22
4	4 + 4 + 4	-	3 + 3 + 3	-	21
5	4 + 4 + 4 + 4 + 4	-	3	-	23
6	4 + 4 + 4 + 4 + 4	-	3	2	25
Total for Three Years	68	24	39	2	133
7	4 + 4 + 4 + 4 + 4	-	-	-	20
8	4 + 4 + 4	4 + 4 + 4	-	12	24
Total for Four Years	88 + 12 = 100	36	39	2	177

Credit Distribution For Different Pathways

EVALUATION SCHEME

- The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks is from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks is from internal evaluation and 50 marks, from external evaluation.
- 2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit Practical/Practicum.

In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

In 4-credit courses with 3-credit theory and 1-credit Practical/Practicum components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for Practical/Practicum. The Practical/Practicum component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Applied Mathematics are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

Sl. No.	Nature of the Course		Internal Ev Marks (About Total)	valuation in t 30% of the	External Exam on 4 Modules (Marks)	Total Marks
			Open-ended Module / Practical/Prac ticum	On the other 4 Modules		
1	4-credit course	Only theory (5 modules)	10	20	70	100
2	4-credit course	Theory (4 modules) + Practical/Practicum	20	10	70	100
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

Sl. No.	Components of Internal Evaluation of Theory Part of	Internal	Marks for the	Theory Part		
110.	a	of a Major	/ Minor Cours	rse of 4-credits		
	Major / Minor Course	Theory Only		Theory + Practical/Practicum		
		4 Theory Modules	Openended Module	4 Theory Modules	Practical/ Pra cticum	
1	Test paper/ Mid-semester Exam	10	4	5	-	
2	Seminar/ Viva/ Quiz	6	4	3	-	
3	Assignment	4	2	2	-	
		20	10	10	20*	
*	Total	30		30	1	

Refer the table in section 1.2 for the evaluation of Practical/Practicum component

1.1.EVALUATION OF PRACTICAL/PRACTICUM COMPONENT

The evaluation of Practical/Practicum component in Major and Minor courses is

completely by internal evaluation.

- Continuous evaluation of Practical/Practicum by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester Practical/Practicum examination and viva-voce, and the evaluation of Practical/Practicum records shall be conducted by the teacher incharge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of Practical/Practicum courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and vivavoce of Practical/Practicum component shall be as given below:

S1.	Evaluation of Practical/Practicum Component	Marks for	Weig
No.		Practical/	htage
	of Credit-1 in a Major / Minor Course	Pra cticum	
1	Continuous evaluation of Practical/Practicum/ exercise performed in Practical/Practicum classes by the students	10	50%
2	End-semester examination and viva-voce to be conducted by teacher-in-charge along with an additional examiner arranged internally by the Department Council	7	35%
3	Evaluation of the Practical/Practicum records submitted for the end semester viva–voce examination by the teacher- incharge and additional examiner	3	15%
	Total Marks	20	

1.2.EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

Duration	Туре	Total No. of Questions	No. of Questions to be Answered	Aarks for Each Question	Ceiling of Marks
2 Hours	Short Answer	10	8 - 10	3	24
	Paragraph/ Problem	8	6 - 8	6	36
	Essay	2	1	10	10
				otal Marks	70

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

2.INTERNSHIP

• All students should undergo Internship of 2-credits during the first six semesters in Research Institutions, Universities, firm, industry or organization, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.

- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship

2.1.GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Mathematics or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In B.Sc. Applied Mathematics Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical results, ideas, expressions, experimental conditions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. EVALUATION OF INTERNSHIP

• The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.

- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation	of Internship	Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of internship through interim	Acquisition of skill set	10	40%
2	presentations and reports by the committee internally constituted by	Interim Presentation and Viva-voce	5	
3	e Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ St	udy Tour	5	10%
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the committee internally constituted by the	Presentation of the work	5	
7	Department Council	Viva-voce	6	
8	internship supervisor, and f the end semester viva-voce	ation of the day-to-day records, the report of ship supervisor, and final report submitted for ad semester viva–voce examination before the nittee internally constituted by the Department cil		
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ST/OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three Core Courses in Major in semester 8.
- The approved research centres of University of Calicut or any other university/ HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University of Calicut, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty members with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the University/ College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.

The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.

• If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Applied Mathematics or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of theoretical/ experimental /computational in nature.
- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
- Wide review of a topic.
- Investigation on a problem in a systematic way using appropriate techniques.
- Systematic recording of the work.
- Reporting the results with interpretation in a standard documented form. Presenting the results before the examiners.
- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical models and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.

- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
- 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the University.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)	Weightage
1	Continuous evaluation of project work through interim presentations and reports by the committee internally constituted by the Department Council	90	30%
2	End-semester viva-voce examination to be conducted by the external examiner appointed by the university	150	50%

3	Evaluation of the day-to-day	60	20%
	records and project report submitted		
	for the end- semester viva-voce		
	examination		
	conducted by the external examiner		
	Total Marks	300	

INTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva- Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
Total	Marks	90

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/
		Honours with Research)
		12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
Т	tal Marks	210

4. GENERAL FOUNDATION COURSES

All the General Foundation Courses (3-credits) in Applied Mathematics are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General Foundation Course in	ternal Marks of a General Foundation Cour of 3-credits in Applied Mathematics			
	Applied Mathematics	4 Theory Modules	Open-ended Module		
1	Test paper/ Mid-semester Exam	10	2		
2	Seminar/ Viva/ Quiz	6	2		
3	Assignment	4	1		
		20	5		
		25			
	Total				

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5)

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

	•				
Duration	Туре	Total No. of Questions	No. of Questions to be Answered	Marks for Each Question	Ceiling of Marks
1.5 Hours	Short Answer	10	8-10	2	16
	Paragraph/ Problem	5	4 – 5	6	24
	Essay	2	1	10	10
				Total Marks	50

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

S1.	Percentage of Marks	Description			ange of	Class
No.	(Internal & External		Grade	Point	Grade Points	
	Put Together)					
1	95% and above	Outstanding	0	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 – 9. 49	with Distinction
3	75% to below 85%	Very Good	А	8	7.50 - 8.49	
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above Average	В	6	5.50 - 6.49	First Class
6	45% to below 55%	Average	С	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	Р	4	3.50 - 4.49	Third Class

LETTER GRADES AND GRADE POINTS

8	Below an aggregate of 35%	Fail	F	0	0-3.49	Fail
	or below 30% in external evaluation					
9	Not attending the	Absent	Ab	0	0	Fail
	examination					

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester, i.e. SGPA (Si) = $\Sigma i (Ci \times Gi) / \Sigma i$ (Ci) where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

Semester	Course	Credit	Letter Grade	Grade point	Credit Point (Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	0	10	$3 \ge 10 = 30$
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the University shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR COURSES

Programme	B.Sc. Applied Mathematics Honours				
Course Code	AMA1CJ101				
Course Title	Calculus I				
Type of Course	Major				
Semester	1				
Academic Level	100-199				
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours	
		per week	per week		
	4	3	2	5	
Pre-requisites			and Functions, School	Level Algebra	
Course Summary	and Real Numbers (0-99 level).This course covers key concepts such as extrema of functions, including absolute and relative extrema, and the application of Fermat's Theorem and the Mean Value Theorem. It explores techniques for analyzing the behavior of functions through derivatives, concavity, and optimization, along with methods for evaluating limits, asymptotes, and curve sketching. Students will also learn integration techniques, including indefinite and definite integrals, and apply the Fundamental Theorem of Calculus to solve problems. The course further delves into applications like finding areas between curves, volumes of solids of revolution, and arc length and surface area of revolution.				

COURSE OUTCOME

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
C01	Students will be able to understand how to identify and analyze increasing and decreasing functions, absolute and relative extrema of functions	An	P	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO2	Students will be able to Conceptually understand and calculate the area between curves, volume of solids of revolution, arc length, and surface areas of revolution.	U	C	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO3	Students will be able to analyze the concavity and points of inflection, understand and identify limits involving infinity and asymptotes, sketch the graph of a function including slant asymptotes, and solve optimization problems to find absolute extrema.	An	P	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam

CO4	Students will be able to understand and apply basic theorems on integral calculus, solve definite integrals	Ар	Ρ	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam			
	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)						
Knowledg	e (F), Conceptual Knowledge (C), Procedura	ai knowledge (P)	, Metacognitive r	nowledge (IVI)			

Detailed Syllabus:

Text Book	Calcul	us: Soo T Tan Brooks/Cole, Cengage Learning (2010).	•	
Module	Unit	Content	Hours	Marks
				Ext:70
	1	3.1: Extrema of Functions- Absolute Extrema of Functions, Relative Extrema of Functions, Fermat's Theorem, Finding the Extreme Values of a Continuous Function on a Closed Interval.		
I	2	3.2: The Mean Value Theorem- Rolle's Theorem, The Mean Value Theorem.	8	Min. 10
	3	3.3: Increasing and Decreasing Functions- definition, inferring the behavior of function from sign of derivative.		
	4	3.3 Finding the Relative Extrema of a Function, first derivative test.		
	5	3.4: Concavity and Inflection points- Concavity, Inflection Points, The Second Derivative Test.		
II	6	3.5: Limits involving Infinity; Asymptotes- Infinite Limits, Vertical Asymptotes, Limits at Infinity, Horizontal Asymptotes, Infinite Limits at Infinity.	16	Min. 15
	7	3.6: Curve Sketching- The Graph of a Function, Guide to Curve Sketching, Slant Asymptotes.	•	
	8	3.7: Optimization Problems- guidelines for finding absolute extrema.		
	9	4.1: Indefinite integrals- Basic Rules of Integration, a few basic integration formulas and rules of integration.		
ш	10	4.1 Differential Equations, Initial Value Problems.		
	11	4.4: The Definite Integral- Definition of the Definite Integral, Properties of the Definite Integral, More General Definition of the Definite Integral.	17	Min. 15
	12	4.5: The Fundamental Theorem of Calculus- The Mean Value Theorem for Definite Integrals.		

		45The Evendemental Theorem of Calculus Dart I		
		4.5The Fundamental Theorem of Calculus: Part I,		
		inverse relationship between differentiation and		
	12	integration, 4.5Fundamental Theorem of Calculus: Part 2,		
	13			
		Evaluating Definite Integrals Using Substitution,		
	14	Definite Integrals of Odd and Even Functions.		
	14	Definite Integrals of Odd and Even Functions		
	15	5.1: Areas between Curves- The Area Between Two		
		Curves		
	16	5.2: Volume- Solids of revolution, Volume by Disk		
		Method, Region revolved about the x-axis, Region		
IV		revolved about the y-axis.	12	Min. 15
	17	Volume by the Method of Cross Sections ['Washer		
		Method' omitted]		
	18	5.4: Arc Length and Areas of surfaces of revolution-		
		Definition of Arc Length, Length of a Smooth Curve,		
		arc length formula.		
	19	5.4Surfaces of Revolution, surface area as surface of		
		revolution		
	20	5.4 surface area as surface of revolution		
V-Open Ei	nded	Practicum:	12	
		The goal is for the students to learn the following		
		topics in 15 practicum sessions of two hours each via self-study and group activities. The lecturer may assist		
		running group discussions, supervising class seminars		
		and referring library books for self-study and note		
		preparation.		
		Overview of limits and continuity of functions		
		(Chapter 1)		
		3.1: An Optimization Problem.		
		3.2: Some Consequences of the Mean Value		
		Theorem, Determining the Number of Zeros of a		
		Function.		
		3.4: The roles of 'and <i>f</i> ' in determining the Shape of a		
		Graph.		
		3.5: Precise Definitions		
		3.6: Finding Relative Extrema Using a Graphing		
Practic	al	Utility.		
Flactic	ai	3.7: Formulating Optimization Problems- application		
		involving several real-life problems.4.4: Geometric Interpretation of the Definite Integral,		
		The Definite Integral and Displacement.		
		4.5: How Are Differentiation and Integration Related?		
		The Definite Integral as a Measure of Net Change.		
		5.1: A Real-Life Interpretation, Integrating with		
		Respect to -adapting to the shape of the region, What		
		Happens When the Curves Intertwine?		
		5.4: Arc length function, arc length differentials		
i				

Graphing of the following functions using any software (any 5).		
$f(x) = 2x + 3$ on $[-1, \infty)$		
$f(t) = 4t^{1/3} + 3t^{4/3}$ on \mathbb{R}	1	
$g(t) = 2t^3 + 3t^2 - 12t + 4$	1	
$f(x) = x^3$		
$f(x) = \frac{1}{x}$	1	
$f(x) = (x-1)^{1/3}$		
$f(x) = \cos(\sin x)$ on (-2, 2)	l	
$f(x) = \frac{1}{1 - \cos x}$ on (0,2 π)	l	
$f(x) = 2\sin x + \sin 2x \text{ on } (0, \pi)$	l	
$f(x) = \frac{x}{(x+1)(x-2)}$	1	
References:		•

Joel Hass, Christopher Heil & Maurice D. Weir: Thomas' Calculus (14/e) Pearson (2018). Robert A Adams & Christopher Essex: Calculus Single Variable (8/e) Pearson Education Canada (2013). Jon Rogawski & Colin Adams: Calculus Early Transcendentals (3/e) W. H. Freeman and Company (2015).

Anton, Bivens & Davis: Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc. (2016). James Stewart: Calculus (8/e) Brooks/Cole Cengage Learning(2016) Jerrold Marsden & Alan Weinstein: Calculus I and II (2/e) Springer Verlag NY (1985).

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

···FF		0.0 11-0									
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	2	1	3	-	1
CO 2	2	3	2	1	3	-	2	1	3	-	1
CO 3	2	3	2	1	3	-	2	2	3	-	1
CO4	2	3	2	1	3		1	1	2		1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial /
	High

Assessment Rubrics:

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	✓	✓	\checkmark
CO 2	\checkmark	\checkmark	√	√	~
CO 3	√	\checkmark	√	√	✓
CO4	√	\checkmark			\checkmark

Programme	B.Sc. Applied Mathematics Honours					
Course Code	AMA20	AMA2CJ101				
Course Title	Calculu	s II				
Type of Course	Major					
Semester	2					
Academic Level	100-199	1				
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours		
	per week per week					
	4 3 2 5					
Pre-requisites	Basic kr	nowledge of Funct	ions, Limits, Continui	ity and		
	Differen	tiation (Calculus I)			
Course Summary	The cou	urse provides a o	comprehensive explo	ration of integral		
		· · · ·	ues such as indefinite	U ,		
	sums, d	efinite integrals, p	properties of integrals	, the Fundamental		
		· •	ule, basic integration			
	applicat	ions in finding ar	eas between curves,	volumes of solids,		
	•	·	and areas of surface			
	Through	these topics, stud	lents gain proficiency	in solving a wide		
	range o	f mathematical p	roblems involving i	ntegration and its		
	applicati	ions in various fiel	ds.			

Course outcome

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO1	Students will understand the properties and derivatives of natural logarithmic and exponential functions, hyperbolic functions, apply logarithmic and exponential differentiation and integration techniques, and use L'Hôpital's Rule to resolve indeterminate forms.	U	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO2	To practically apply several different tests for sequences and series such as integral test, comparison test and so on. As a special case, a study on power series- their region of convergence, differentiation, and integration etc., is also done.	Ар	F	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam

CO 4	To recognize and evaluate the area of surface of revolution of a parametrized plane curve.	Ар	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 							

Knowledge (M)

Calculus: Soo T Tan Brooks/Cole, Cengage Learning (2010). Text Book Module Unit Content Hours Marks (45+30)**Ext:70** 1 6.1: The Natural logarithmic functionDefinition, The Derivative of ln x, Laws of Logarithms, The Graph of the Natural Logarithmic Function, The Derivatives of Logarithmic Functions, Logarithmic Differentiation, Integration Involving Logarithmic Functions 6.3: Exponential Functions - The number 2 e, Defining the Natural Exponential Function, properties, The Laws of I Exponents, The Derivatives of Exponential Functions, Integration of the Natural 10 Exponential Function. 6.4: General Exponential and 3 Logarithmic Functions - Exponential Functions with Base a, laws of exponents, The Derivatives of a^x and a^u , Graphs of y = ax, integrating a^x , Logarithmic Functions with Base a, change of base formula, The Power Rule (General Form),

	The Derivatives of Logarithmic Functions with base a, The Definition of the Number e as a Limit ['Compound Interest' omitted]
4	6.6: Hyperbolic functions - The Graphs of the Hyperbolic Functions, Hyperbolic Identities, Derivatives and Integrals of Hyperbolic Functions, Inverse Hyperbolic Functions, representation in terms of logarithmic function, Derivatives of Inverse Hyperbolic Functions, An Application

	5	6.7: Indeterminate forms and L' Hôpital	
		rule- motivation, The Indeterminate	
		forms $\frac{0}{2}$ $\stackrel{\infty}{\longrightarrow}$ and , The indeterminate	
		forms	
		∞ 0	
		$\infty - \infty$ and 0, Indeterminate forms 0^0 ,	
		∞^0 and 1^∞ .	
	6	7.6: Improper integrals- definition, Infinite	
		Intervals of Integration, Improper Integrals	
		with Infinite Discontinuities, A Comparison	
		Test for Improper Integrals. (Only	
		statements are needed; proofs are omitted).	
	7	9.1: Sequences- definition, recursive	
		definition, Limit of a Sequence, limit laws,	10
II		squeeze theorem, Bounded Monotonic Sequences, definition, monotone	10
11		convergence theorem. (Only statements are	
		needed; proofs are omitted).	
	8	9.2: Series- defining the sum, convergence	
	Ū	and divergence, Geometric Series, The	
		Harmonic Series.	
	9	The Divergence Test, Properties of	
		Convergent Series. (Only statements are	
	10	needed; proofs are omitted).	
	10	9.3: The Integral Test- investigation of convergence, integral test, The p Series, its	
		convergence and divergence. (Only	
		statements are needed; proofs are omitted).	
	11	9.4: The Comparison Test- test series, The	
		Comparison Test, The Limit Comparison	
		Test. (Only statements are needed; proofs	
		are omitted).	
	12	9.5: Alternating Series- definition, the	
		alternating series test, its proof, examples, Approximating the Sum of an Alternating	
		Series by Sn. (Only statements are needed;	
		proofs are omitted).	
	13	9.6: Absolute Convergence- definition,	
III	_	conditionally convergent, The Ratio Test,	12
		The Root Test, Summary of Tests for	
		Convergence and Divergence of Series,	
		Rearrangement of Series. (Only statements	
		are needed; proofs are omitted).	
	14	9.7: Power Series- definition, Interval of	
		Convergence, radius of convergence,	
		Differentiation and Integration of Power	
		Series. (Only statements are needed; proofs	
		are omitted).	I I

	15	9.8: Taylor and Maclaurin Series- definition, Taylor and Maclaurin series of functions, Techniques for Finding Taylor Series. (Only statements are needed; proofs are omitted).	
	16	10.2: Plane Curves and Parametric Equations- Why We Use Parametric Equations, Sketching Curves Defined by Parametric Equations.	
IV	17	10.3: The Calculus of parametric equations- Tangent Lines to Curves Defined by Parametric Equations, Horizontal and Vertical Tangents, Finding d^{2y} $_$ from Parametric Equations, The Length dx^{2} of a Smooth Curve, The Area of a Surface of Revolution.	13
	18	10.4: Polar coordinates- The Polar Coordinate System, Relationship between Polar and Rectangular Coordinates.	
	19	10.5: Areas and Arc Lengths in polar coordinates- Areas in Polar Coordinates, area bounded by polar curves, Area Bounded by Two Graphs, Arc Length in Polar Coordinates, Area of a Surface of Revolution, Points of Intersection of Graphs in Polar Coordinates.	
	20	Area of a Surface of Revolution, Points of Intersection of Graphs in Polar Coordinates.	
V		Practicum/practicum: The goal is for the students to learn the following topics in 15 practicum sessions of two hours each via self-study and group activities. The lecturer may assist running group discussions, supervising class seminars and referring library books for self-study and note preparation. 6.4: Compound Interest	30
		10.4 , Graphs of Polar Equations, Symmetry, Tangent Lines to Graphs of Polar Equations.	

List of Practical (using any software): Plotting of graphs of function: e^{ax+b} , log(ax+b), $\underline{}^1$, sin(ax+b)ax+bb), cos(ax + b), |ax + b| and be able to find the effect of a and b on the graph. Sketching parametric curves: • $x = \sqrt{t}, y = t$ • $x = t, y = t^2$ • $x = \sin t$, $y = \sin 2t$, $0 \le t \le 2\pi$ $x = \theta - \sin \theta$, $y = 1 - \cos \theta$, $-\infty$ • $< \theta < \infty$ Polar curves: • *r* = 2 • $r = 1 + \cos \theta \cdot r = 2 \cos 2\theta$ $r = 2\sqrt{\cos 2\theta}$ $r = 1 - 2\cos\theta$ $r^2 = 4 \sin 2\theta$ $r = \sin 3\theta$ $r = 4 \sin 4\theta$ $r = e^{\theta}$ $r = \frac{1}{\theta}$ $r = \theta$ ٠ **References:** Joel Hass, Christopher Heil & Maurice D. Weir: Thomas' Calculus (14/e) Pearson (2018). Robert A Adams & Christopher Essex: Calculus Single Variable (8/e) Pearson Education Canada (2013).

Jon Rogawski & Colin Adams: Calculus Early Transcendentals (3/e) W. H. Freeman and Company (2015).

Anton, Bivens & Davis: Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc. (2016).

James Stewart: Calculus (8/e) Brooks/Cole Cengage Learning (2016).

Jerrold Marsden & Alan Weinstein: Calculus I and II (2/e) Springer Verlag NY (1985).

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	3	1	3	-	1
CO 2	2	3	2	1	3	-	3	1	3	-	1
CO 3	2	3	2	1	3	-	3	2	3	-	2
CO4	2	3	2	1	3	-	3	2	3	-	2

Correlation Levels:

Level	Correlation	
-	Nil	
1	Slightly / Low	Viva
2	Moderate / Medium	
3	Substantial / High	

Assessment Rubrics:

Assignment/ Seminar Internal Exam

Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
	Internal Lyan	Assignment	Semma	viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	~	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	~	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark		\checkmark

Programme	B.Sc. Applied Mathematics Honours						
Course Code	AMA3CJ201						
Course Title		Vector Calculus					
Type of Course		Major					
Semester		III					
Academic Level		200-299					
Course Details	Credit	Lectureper week/ Tutorialper week	Practical/ Practicum per week	Total Hours			
	4	3	2	75			
Pre-requisites		Derivatives and antideri	vatives				
Course Summary	To understand the extension of the studies of single variable differential and integral calculus to functions of two or more independent variables. Also, the emphasis will be on the use of Computer Algebra Systems by which these concepts may be analyzed and visualized to have a better understanding. This course will facilitate to become aware of applications of multivariable calculus tools in physics, economics, optimization, and understanding the architecture of curves and surfaces in plane and space etc.						

CO	CO Statement	Cognitiv eLevel*	Knowledg e Category#	Evaluation Tools used
CO1	Students will be able to analyze and graph functions of two or more variables, including understanding level curves and surfaces. They will gain proficiency in analyzing the behavior of these functions, determining limits, and assessing the continuity of functions in multiple dimensions.	Ap	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva
CO2	Students will be able to compute partial derivatives of functions of two and three variables, interpret these derivatives geometrically, and use them to solve problems involving rates of change, slopes, and higher-order derivatives.	Ap	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva
CO3	Students will be able to identify and classify the relative and absolute extrema of functions of two or more variables using the second partial test and apply Lagrange multipliers to solve constrained optimization problems.	Ap	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva
CO4	Students will be able to compute and interpret line integrals, surface integrals, and flux integrals, applying fundamental theorems	Ар	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva

	such as Green's Theorem, Stokes' Theorem, and the Divergence Theorem.								
CO5	Students will understand the concept of the gradient of a function and compute directional derivatives in multiple directions. They will learn how to interpret the gradient in terms of maximal increase, normal properties, and tangent planes,	U		Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva					
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)									
# - Factu	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
	Knowledge (M)								

COURSE OUTCOME

Detailed Syllabus:

Text		nuss, Monty J., Bradley, Gerald L., & Smith, Karl J. (2007). Ca		
Book	Doriii	ng Kindersley (India) Pvt. Ltd. (Pearson Education). Delhi. Ind		
Module		Functionsof several variables	Hrs (45+30)	External Marks (70)
	1	11.1 Basic concepts, level curves and surfaces, graphs of functions of two variables.	12	Min15
Ι	2	11.2 Limits and continuity – Open and Closed sets in \mathbb{R}^2 and \mathbb{R}^3 , limit of a function of two variables, limit of functions of three variables.		
	3	11.3 Partial Derivatives- Partial derivatives of a function of two variables, Partial derivative as a slope, Partial Derivatives as a rate, Higher order partial derivatives, Equality of mixed partials.		
	4	11.4 Tangent planes, incremental approximations, the total differential, differentiability.		
	5	11.5 Chain Rules – Chain rule for one parameter, extensions of the chain rule.		
	6	11.6Directional Derivatives and the Gradient- the directional derivative, the gradient, maximal property of the gradient, functions of three variables, normal property of the gradient, tangent planes and normal lines.		
II	7	11.7 Extrema of Functions of Two Variables- relative extrema, second partial test, absolute extrema of continuous function, least squares approximation of data	10	Min15
	8	11.8Lagrange Multipliers- Method of Lagrange multipliers, constrained optimization problems, Lagrange multipliers with two parameters, a geometric interpretation of Lagrange's theorem.		
	9	13.1 Definition of a vector field, divergence, curl		
	10	12.1Double integration over Rectangular Regions- Definition of the double integral, properties of double integral.		Min15
	11	12.1 Volume interpretation, iterated integration, an informal	12	

III argument for Fubini's Theorem 12 12.2 Double integration over Nonrectangular Regions- Double integration over type I and Type II regions. 13 12.2 More on area and volume, choosing the order of integration in a double integral 14 12.3 Double Integrals in Polar Coordinates- change of variables to polar form, area and volume in polar form. 15 12.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals 16 13.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work 11 17 13.3 Fundamental theorem of path independence 11 18 13.4 Green's theorem 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces 20 12.6 Club between	
integration over type I and Type II regions. 13 12.2 More on area and volume, choosing the order of integration in a double integral 14 12.3 Double Integrals in Polar Coordinates- change of variables to polar form, area and volume in polar form. 15 12.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals 16 13.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work 11 17 13.3 Fundamental theorem of path independence 18 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
13 12.2 More on area and volume, choosing the order of integration in a double integral 14 12.3 Double Integrals in Polar Coordinates- change of variables to polar form, area and volume in polar form. 15 12.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals 16 13.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line 11 17 13.3 Fundamental theorem of path independence 18 18 13.4 Green's theorem 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
in a double integral1412.3 Double Integrals in Polar Coordinates- change of variables to polar form, area and volume in polar form.151512.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals1613.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work1713.3 Fundamental theorem of path independence1813.4 Green's theorem1913.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
14 12.3 Double Integrals in Polar Coordinates- change of variables to polar form, area and volume in polar form. 15 12.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals 16 13.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work 11 17 13.3 Fundamental theorem of path independence 18 18 13.4 Green's theorem 19 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
to polar form, area and volume in polar form.1512.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals1613.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work1713.3 Fundamental theorem of path independence1813.4 Green's theorem1913.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
15 12.5 Triple integrals- definition of the triple integral, iterated integration, volume by triple integrals 16 13.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work 17 13.3 Fundamental theorem of path independence 18 13.4 Green's theorem 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
integration, volume by triple integrals IV 16 13.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work 17 13.3 Fundamental theorem of path independence 18 13.4 Green's theorem 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
IV1613.2 Line integrals: Definition of a line integrals with respect to x, y and z; line integrals of vector fields; application of line integrals; mass work111713.3 Fundamental theorem of path independence111813.4 Green's theorem191913.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
IVx, y and z; line integrals of vector fields; application of line integrals; mass work111713.3 Fundamental theorem of path independence181813.4 Green's theorem1913.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
integrals; mass work1713.3 Fundamental theorem of path independence1813.4 Green's theorem1913.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	Min 15
 17 13.3 Fundamental theorem of path independence 18 13.4 Green's theorem 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces 	
18 13.4 Green's theorem 19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
19 13.5 Surface integrals- surface integration, flux integrals, integrals over parametrically defined surfaces	
integrals over parametrically defined surfaces	
integrals over parametrically defined surfaces	
20 13.6 Stoke's theorem- Stoke's theorem, theoretical application	
of Stokes's theorem, physical interpretation of Stoke's theorem	
V Practicum:	
The goal is for the students to learn the following topics in practicum	
sessions via self-study and group activities. The lecturer may assist	
by running group discussions, supervising class seminars and 30	
referring library books for self-study and note preparation.	
12.4 Surface area: definition of surface area projections, area of a surface	
defined parametrically.	
12.6 Mass, Moment and probability Density functions	
12.7 cylindrical and Spherical coordinates- cylindrical coordinates,	
integration with cylindrical coordinates, spherical coordinates,	
integration with spherical coordinates.	
12.8 Jacobian: change of variables	
13.7 Divergence theorem- the divergence theorem, application of the	
divergence theorem, physical interpretation of divergence.	
Practicals using any software:	
Sketch the solid bounded by the graphs of the equations,	
i. $3x + 2y + z = 6 x = 0, y = 0, z = 0$	
ii. $y = 2z, y = x^2, y = 4, z = 0$	
iii. $x = 4 - y^2, x + z = 4, x = 0, z = 0$	
iv. $z = 1 - x^2, y = x, y = 2 - x, z = 0$	
v. $z = x^2 + y^2, z = 8 - x^2 - y^2$	
vi. $x^2 + z^2 = 4, y^2 + z^2 = 4$	
Sketch the solid under the surface	
i. z=xy and above the triangular region in the xy plane bounded	
by the lines $y=2x$, $y=-x+6$ and $y=0$	
ii. the paraboloid $z = x^2 + y^2$ and above the region in the xy	
plane bounded by the line $y==x$ and the parabola $y=x^2$.	
Sketch the region of integration for the integrated integral $\int_{-\infty}^{1} \int_{-\infty}^{1-x} f(x) dx$	
i. $\int_0^1 \int_0^{1-x} f(x, y) dy dx$	

ii.
$$\int_0^1 \int_{y^2}^{\sqrt[3]{x}} f(x,y) dx dy$$

References:

Joel Hass, Christopher Heil & Maurice D. Weir: Thomas' Calculus (14/e) Pearson (2018).

Robert A. Adams & Christopher Essex: Calculus Single Variable (8/e) Pearson Education Canada (2013). Jon Rogawski & Colin Adams: Calculus Early Transcendentals (3/e) W. H. Freeman and Company (2015).

Anton, Bivens & Davis: Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc. (2016) James Stewart: Calculus (8/e) Brooks/Cole Cengage Learning (2016).

Jerrold Marsden & Alan Weinstein: Calculus I and II (2/e) Springer Verlag NY (1985).

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	-	3	1	3	-	1
CO 2	2	3	2	1	3	-	3	1	3	-	1
CO 3	2	3	2	1	3	-	3	2	3	-	2
-04	2	3	2	2	3	-	2	1	2	-	1
-CO5	2	3	2	2	3	-	2	1	2	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	~	\checkmark
CO 3	~	\checkmark	✓	~	√
CO4	~	\checkmark	✓	~	√
CO5	√	~	✓	~	✓

Mapping of COs to Assessment Rubrics:

Programme	B.Sc. App	olied Mathematics	Honours				
Course Code	AMA3C	AMA3CJ202					
Course Title	Linear P	rogramming and A	Applications				
Type of Course	Major						
Semester	3						
Academic Level	200-299						
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total			
		per week	per week	Hours			
	4	4	-	4			
Pre-requisites	Basic kno	wledge of Linear H	Programming Problem	s, solution			
	using(0-9	9 level).					
Course Summary	The cours	se covers basic defi	nitions of Linear Prog	ramming			
	Problems, Solution using graphical method, Solution using						
	Simplex 1	Simplex method, Duality Theorem, Transportation and					
	Assignme	ent problems.					

COURSE OUTCOME(CO)

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
CO1	Develop mathematical formulations for real-world problems involving profit maximization and cost minimization, using appropriate objective functions and constraint sets.	E	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO2	Students will be able to apply the simplex algorithm to solve both maximization and minimization linear programming problems, with a strong understanding of the underlying mechanics, including pivot transformations, and the use of Tucker Tableaus techniques to a wide range of practical optimization problems in various fields, including economics, operations research, and business planning.	AP	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam

CO3	Apply graphical methods to solve two-variable linear programming problems, finding feasible and optimal solutions.	Ар	P	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO4	Students will be able to solve complex transportation and assignment problems using a variety of methods. They will be able to apply the Vogel's Approximation Method (VAM) , Hungarian Algorithm , and other related techniques, understanding when to use each method and how to achieve the most efficient solution. These skills will be applicable in fields such as logistics, supply chain management, operations research, and project management.	An	С	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
	mber (R), Understand (U), Apply (Ap), Ana ge (F), Conceptual Knowledge (C), Procedu			

DETAILED SYLLABUS

Text Book	Linear Programming and Its Applications: James K. Strayer Under- Graduate Texts in Mathematics Springer (1989) ISBN: 978-1-4612-6982-3				
Module	Unit	t Content		Marks	
				Ext:70	
	1	Chapter 1: Geometric Linear Programming : Profit Maximization and Cost Minimization, typical motivating examples.			
I	2	mathematical formulation, Canonical Forms for Linear Programming Problems, objective functions, constraint set, feasible solution, optimal solution.	8	Min. 10	
I	3	Polyhedral Convex Sets, convex set, extreme point, theorems asserting existence of optimal solutions	o		
	4	The Two Examples Revisited, graphical solutions to the problems, A Geometric Method for Linear Programming, the difficulty in the method, Concluding Remarks.			
П	5	Chapter 2: The Simplex Algorithm : Canonical Slack Forms for Linear Programming Problems; Tucker Tableaus, slack variables, Tucker tableaus, independent variables or non-basic variables, dependent variables or basic variables.	16	Min. 15	

I				
	6	An Example: Profit Maximization, method of solving		
		a typical canonical maximization problem, The Pivot		
		Transformation,		
		The Pivot Transformation for Maximum and Minimum		
		Tableaus, An Example: Cost Minimization, method of		
		solving a typical canonical minimization problem		
	7	The Simplex Algorithm for Maximum Basic Feasible		
		Tableaus		
	8	The Simplex Algorithm for Maximum Tableaus		
	9	Negative Transposition;		
	10	The Simplex Algorithm for Minimum Tableaus,		
		Cycling, Simplex Algorithm Anti cycling Rules,		
		Concluding Remarks.		
	11	Chapter 4: Duality Theory: Duality in Canonical		
		Tableaus.		
	12	The Dual Simplex Algorithm, The Dual Simplex		
III		Algorithm for Maximum Tableaus.	10	Min. 15
	13	Matrix Formulation of Canonical Tableaus,	10	
	14	The Duality Equation, The Duality		
	17	theorem, Concluding Remarks.		
	15	Chapter 6: Transportation and Assignment		
	15	Problems : The Balanced Transportation Problem The		
		Vogel Advanced-Start Method (VAM)		
	16	The Transportation Algorithm, Another Example		
IV	10	Unbalanced Transportation Problems	12	Min. 15
1 V		-	12	WIII. 15
	18	The Minimum-Entry Method		
	19	The Northwest-Corner Method		
	20	The Assignment Problem: The Hungarian Algorithm,		
		Concluding Remarks.		
V-Open E	nded	Chapter 3:	12	
		Non-cannonical Linear Programming Problems:		
		Introduction, Unconstrained variables Equations		
		of constraints.		
		Chapter 5: Matrix Games		
		An example: Two- Person Zero-Sum Marix Games.		

References:

- Robert J. Vanderbei: Linear Programming: Foundations and Extensions (2/e) Springer Science + Business Media LLC (2001) ISBN: 978-1-4757-5664-7
- 2. Frederick S Hiller, Gerald J Lieberman: Introduction to Operation Research (10/e) McGrawHill Education, 2 Penn Plaza, New York (2015) ISBN: 978-0-07-352345-3
- 3. Paul R. Thie, G. E. Keough: An Introduction to Linear Programming and Game Theory (3/e) John Wiley and Sons, Ins. (2008) ISBN: 978-0-470-23286-6
- 4. Louis Brickman: Mathematical Introduction to Linear Programming and Game Theory UTM, Springer Verlag, NY (1989) ISBN: 0-387-96931-4
- 5. Jiri Matoušek, Bernd Gartner: Understanding and Using Linear Programming Universitext, Springer-Verlag Berlin Heidelberg (2007) ISBN: 978-3-540-30697-9

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

P P		0.5 1114	1000	and I O	••						
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	2	1	1	1	1	3
CO 2	2	2	2	2	3	2	1	1	2	1	1
CO 3	3	2	1	1	3	2	1	1	1	1	2
CO4	3	2	2	1	3	2	1	1	1	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics: Assignment/ Seminar

Internal Exam

Report Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Seminar	Report	End Semester Examinations
CO 1		\checkmark	\checkmark		

CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	

Programme	B.Sc. Applied	B.Sc. Applied Mathematics Honours								
Course Code	AMA4CJ203	AMA4CJ203								
Course Title	LINEAR ALC	LINEAR ALGEBRA								
Type of Course	Major	0								
Semester	IV									
Academic	200-299	200-299								
Level										
Course Details	Credit									
		Tutorial Practicum per								
	per week week									
	4 3 2 75									
Pre-requisites	1. Familiarity with system of equations and their solutions.									
	2. Knowledge about matrices and matrix operations.									
Course	This course should enable the student to study the linear systems of									
Summary	equations, vector spaces, and linear transformations. A number of									
	methods for solving a system of linear equations are discussed. The									
		-	near algebra namely the	1						
			ospace, spanning vecto							
			ndamental results in th							
	-		to understand the relation	1 0						
		•	linear equations and so	-						
	subspaces assoc	ciated with the coef	fficient matrix of the sys	stem.						

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
CO1	Develop a comprehensive understanding of systems of linear equations, Gaussian elimination, and the use of matrices in representing and solving such systems. Apply matrix operations and properties to manipulate and simplify linear equations and systems effectively.	U	Р	Internal Exam/ Assignment/ Seminar/Viva/ End Sem Exam
CO2	Gain proficiency in identifying and working with special types of matrices, such as diagonal, triangular, symmetric, and elementary matrices. Use these properties to find inverses, understand invertibility, and perform matrix transformations to solve complex systems and model real-world scenarios.		С	Internal Exam/ Assignment/ Seminar/Viva/ End Sem Exam

CO3 Learn to compute determinants using cofactor expansion, minors, and row reduction techniques. Understand the properties of determinants and apply Cramer's Rule to solve linear systems. Explore the role of determinants in defining properties of linear transformations and vector spaces.	Ар	Р	Internal Exam/ Assignment/ Seminar/Viva/ End Sem Exam						
CO4Synthesizeknowledgefrom matrices,AnCInternal Exam/ Assignment/ Seminar/Viva/ End Sem Examvectorspacestoanalyzeand solveseminar/Viva/ End Sem ExamDemonstratetheabilitytoapply algebraicEnd Sem Examoflinearalgebratomodel, interpret, andresolveinterpret,andresolvepractical and variousdisciplines.									
# - Factual Knowledge(F) Concept	 various disciplines. * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)Metacognitive Knowledge (M) 								

Detailed Syllabus:

Text Book	Eleme Chris	entary Linear Algebra: Application Version(11/e):	Howard	Anton &
		s, Wiley (2014) ISBN 9781118434413		
Module	Unit	Content	Hours	Marks
				Ext:70
	1	1.1: Introduction to Systems of Linear		
		Equations Linear equation in <i>n</i> variables, linear		
		system of equations in n variables, solution,		
		Linear Systems in Two and Three Unknowns,		
		solution by geometric analysis		
	2	consistent and inconsistent systems, linear system		
		with no, one, and infinite number of solutions,		
		augmented matrix and elementary row operations.		
Ι	3	1.2: Gaussian elimination Considerations in	12	Min. 15
		Solving Linear Systems, Echelon Forms, reduced		
		row echelon form		
	4	Elimination Methods, Gauss-Jordan elimination,		
		Gaussian elimination		
	5	Homogeneous Linear Systems, Free Variables,		
		Free Variable Theorem for Homogeneous		
		Systems, Gaussian Elimination and Back		
		Substitution, Some Facts about Echelon Forms.		

	6	1.3 : Matrices and Matrix operations Matrix					
	U	Form of a Linear System (All other topics are					
		omitted).					
		1.4 : Inverses and algebraic properties of					
		matrices Inverse of a Matrix, Properties of					
		Inverses, Solution of a Linear System by Matrix					
		Inversion.					
		(All other topics are omitted).					
	7	1.5: Elementary matrices and a method for					
		finding A ⁻¹ Equivalence, elementary matrix,					
		Row Operations by					
		Matrix Multiplication, invertibility of elementary					
		matrices, invertibility and equivalent statements.					
		A method for inverting matrices, Inversion					
		algorithm and illustrations.					
	8	1.6: More on linear systems and invertible					
		matrices					
		Number of Solutions of a Linear System, Solving Linear	ving				
		Systems by Matrix Inversion, Linear Systems					
		with a					
		Common Coefficient Matrix, Properties of					
II		Invertible Matrices, equivalent statements for	13	Min. 15			
		unique solution of $Ax = b$, determining					
		consistency.					
	9	1.7 : Diagonal, Triangular and symmetric matrices					
		Diagonal Matrices, Inverses and Powers of					
		Diagonal					
		Matrices, Triangular Matrices. Properties of					
		Triangular Matrices					
	10	, Symmetric Matrices, Algebraic Properties of					
		Symmetric Matrices, Invertibility of Symmetric					
		Matrices.					
	11	1.8 : Matrix transformations Definition,					
		Properties of					
		Matrix Transformations, standard matrix, A					
	12	Procedure for Finding Standard Matrices.					
	12	2.1 : Determinants by cofactor expansion Minors					
		Cofactors, cofactor expansion, Definition of a					
		General					
III		Determinant, A Useful Technique for Evaluating	10	Min. 15			
		2×2 and					
		3×3 Determinants (Only Problems)					

	13	2.2 : Evaluating determinants by row		
	15	reduction		
		Examples and problems to find determinant by		
		row reduction (Theory omitted)		
	14	2.3 : Properties of Determinants; Cramer's		
		Rule		
		Cramer's Rule (Only problems), Inverse of		
		matrices using adjoint formula (Only problems).		
	15	4.1 : Real vector space Vector Space Axioms,		
		examples, Some Properties of Vectors.		
		(Example 8 omitted) 4.2 : Subspaces		
		Definition, criteria for a subset to be a		
		subspace, examples, Building Subspaces,		
		linear		
		combination, spanning,		
	16	Solution Spaces of Homogeneous Systems as		
		subspace, The Linear Transformation		
		Viewpoint, kernel, different set of vectors		
		spanning the		
		subspace. (Example 8 omitted)		
	17	4.3: Linear Independence Linear Independence		
		and		
		Dependence, illustrations, A Geometric		
		Interpretation of Linear Independence. (All other		
		topics are omitted)		
	18	4.4: Coordinates and basis Coordinate Systems		
	10	in Linear Algebra, Basis for a Vector Space		
IV	19	Finite and infinite dimensional vector spaces,	10	Min. 15
		illustrations, Coordinates		
		Relative to a Basis, Uniqueness of Basis		
	20	Representation 4.5: Dimension Number of Vectors in a Basis,		
	20	4.5: Dimension Number of Vectors in a Basis, dimension, Some Fundamental Theorems,		
V-Open		dimension of subspaces Practicum:	30	
v-Open Ended			30	
Linded		The goal is for the students to learn the following		
		topics in practicum sessions via self-study and		
		group activities. The		
		lecturer may assist by running group discussions,		
		supervising class seminars and referring library		
		books for self-study and note preparation.		
		Omitted topics of 1.4		
		• 4.6: Change of Basis Coordinate Maps,		
		Change of Basis, Transition Matrices,		
		Invertibility of Transition		
	1	Matrices, An Efficient Method for		

 References: Linear Algebra Done Right: Sheldon Axler, Second Edition, Springer (2015) ISBN 978-3-319-11079-0. Jim DeFranza, Daniel Gagliardi: Introduction to Linear Algebra with Applications Waveland Press, Inc. (2015) ISBN: 1478627778. Otto Bretscher: Linear Algebra with Applications (5/e) Pearson Education, Inc. (2013) ISBN: 0321796977. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. Martin Anthony. Michele Harvey: Linear Algebra: Concepts and Methods 			Computing Transition Matrices for \mathbb{R}^n , Transition to the Standard Basis for \mathbb{R}^n .							
 978- 3-319-11079-0. Jim DeFranza, Daniel Gagliardi: Introduction to Linear Algebra with Applications Waveland Press, Inc. (2015) ISBN: 1478627778. Otto Bretscher: Linear Algebra with Applications (5/e) Pearson Education, Inc. (2013) ISBN: 0321796977. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 	Refere	ences:								
 Jim DeFranza, Daniel Gagliardi: Introduction to Linear Algebra with Applications Waveland Press, Inc. (2015) ISBN: 1478627778. Otto Bretscher: Linear Algebra with Applications (5/e) Pearson Education, Inc. (2013) ISBN: 0321796977. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 	1.	Linear Algel	bra Done Right: Sheldon Axler, Second Edition, Spring	nger (201	5) ISBN					
 Waveland Press, Inc. (2015) ISBN: 1478627778. 3. Otto Bretscher: Linear Algebra with Applications (5/e) Pearson Education, Inc. (2013) ISBN: 0321796977. 4. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. 5. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 		978-3-319-	11079-0.							
 Otto Bretscher: Linear Algebra with Applications (5/e) Pearson Education, Inc. (2013) ISBN: 0321796977. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 	2.	2. Jim DeFranza, Daniel Gagliardi: Introduction to Linear Algebra with Applications								
 (2013) ISBN: 0321796977. 4. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. 5. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 		Waveland Press, Inc. (2015) ISBN: 1478627778.								
 Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e) Houghton Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 	3.	Otto Bretscher: Linear Algebra with Applications (5/e) Pearson Education, Inc.								
 Mifflin Harcourt Publishing Company (2009) ISBN: 0618783768. 5. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 		(2013) ISBN	J: 0321796977.							
 David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) Pearson Education, Inc. (2016) ISBN: 032198238X. 	4.	Ron Larson,	, Edwards, David C Falvo: Elementary Linear Algebra	ra (6/e) H	loughton					
(5/e) Pearson Education, Inc. (2016) ISBN: 032198238X.		Mifflin Harc	court Publishing Company (2009) ISBN: 0618783768.							
	5.	David C. La	y, Steven R. Lay, Judi J. McDonald: Linear Algebra an	nd its Ap	plication					
6 Martin Anthony Michele Harvey, Linear Algebra, Concepts and Methods		(5/e) Pearson	n Education, Inc. (2016) ISBN: 032198238X.							
1 0. Martin Anthony, Michole Harvey. Linear Argeora. Concepts and Methods	6.	Martin Ant	hony, Michele Harvey: Linear Algebra: Concepts	ts and	Methods					
Cambridge University Press (2012) ISBN: 9780521279482.		Cambridge V	University Press (2012) ISBN: 9780521279482.							
*Optional topics are exempted for end semester examination	*Option	al topics are	exempted for end semester examination							

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

0	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	1	-	-	-						
CO 2	2	1	2	3	-	-						
CO 3	2	1	2	3	-	-						
CO 4	1	1	2	3	1	-						

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly /
	Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
- Internal Exam
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Interna Exam	Assignment	Practical Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark

Program	B.Sc. Applied Mathematics Honours				
Course Code	AMA4C.	204			
Course Title	Differential Equations				
Type of Course	Major				
Semester	4				
Academic Level	200-299				
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours	
		per week	per week		
	4	3	2	5	
Pre-requisites	Basic Kn	owledge of integrat	tion, differentiation, st	andard	
	integrals	and differentials			
Course Summary	To mode	l the physical wor	rld around us. To int	roduce many	
	of the lay	ws or principles g	overning natural phe	enomenon	
	are state	ments or relations	involving the rate a	t which one	
	quality c	hanges with respe	ect to another. To for	mulate	
	relations	(modelling) that	often results in an ec	quation	
	involvin	g derivative (diffe	erential equation). To	intend to	
	find out ways and means for solving differential equations				
		•	ge applications in pl	-	
		-	ine, economics and e	•	

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
CO1	To analyze basic mathematical models and behavior of solutions to differential equations using direction fields and to classify, solve various types of differential equations, including linear equations with variable coefficients, separable equations, exact equations.	U	F	Internal Exam/ Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	To solve linear homogeneous equations with constant coefficients and nonhomogeneous differential equations using undetermined coefficients, and variation of parameters and to explain fundamental solutions and linear independence.	AP	С	Internal Exam/ Assignment/Sem inar/ Viva/Report/ End Sem Exam

CO4	To apply Fourier series and transforms to solve problems, utilize Fourier integral formulas and properties, compute Fourier transforms of generalized functions, and demonstrate proficiency in Fourier cosine and sine transforms.	Ар	Р	Internal Exam/ Assignment/Semina r/ Viva/Report/ End Sem Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)							

DETAILED SYLLABUS

Text	1.W.E. Boyce & R.C. Diprima, Elementary Differential Equations and Boundary						
		Problems. John Wiley & Sons, 7th Edition.					
		Debnath, Integral transforms and their Applications, CRC	Press, New	York-			
		on- Tokyo, 1995.					
Module	Unit	Content	Hours (45+30)	Marks			
	1	Text 1:	12				
		1.1 Some Basic mathematical Models; Direction Fields					
		1.2 Solutions of Some Differential Equations					
Ι	2	1.3 Classification of Differential Equations					
	3 2.1 Linear equations with variable coefficients						
		2.2 Separable Equations					
	4	2.4 Differences Between Linear and Nonlinear					
		Equations	_				
	5	2.6 Exact equations and integrating factors.					
	6	3.1 Homogeneous equation with constant coefficients	10				
	7	3.2 Fundamental solutions of Linear Homogeneous					
		equations					
	8	3.3 Linear independence and Wronskian					
II	9	3.4 Complex roots of characteristic equations,					
п		3.5 Repeated roots; Reduction of order					
	10	3.6 Non homogeneous equations; Method of					
		Undetermined coefficients,					
		3.7 Variation of parameters					
	11	6.1 Definition of Laplace Transforms	10				
	12	6.2 Solution of Initial Value Problem					
III	13	6.3 Step functions					
	14	6.5 Impulse functions					
	15	6.6 The Convolution Integral					
	16	Text 2:	13				
		1.1Brief Historical Introduction					
		1.2 Fourier Series and Fourier Transforms					
	17	1.4 Basic Concepts and Definitions	-				
11/	17	2.1 Introduction					
IV		2.2 The Fourier Integral Formulas					
	18	2.3 Definition of the Fourier Transform and Examples2.4 Fourier Transforms of Generalized Functions	-				
	10	2.4 Fourier Transforms of Generalized Functions		l			

19 2.11 Solutions of Integral Equations 20 2.13 Fourier Cosine and Sine Transforms with Examples 9 2.11 Solutions of Integral Equations 30 The goal is for the students to learn the following topics in 15 practicum sessions of two hours each via self- study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. 30 Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 7 Chapter 3 X 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of ODE Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Luler Method, Runge-Kutta Method, Picard's Method. 1.5.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3.8 thechanida: A First Course in Differential Equation, PHI.			25 Decis Droportion of Formion Transformer		
20 2.13 Fourier Cosine and Sine Transforms with Examples 30 Practicum: The goal is for the students to learn the following topics in 15 practicum sessions of two hours each via self- study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. 30 Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) 2 V 3.8: Mechanical and Electrical vibrations. Chapter 3 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 1 Introduction, Basic theory of systems of first order Linear Equation 7 Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE 7 Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. 7 Numerical computation of following methods using Python; 1 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applica		10	2.5 Basic Properties of Fourier Transforms		
Examples 30 Practicum: 30 The goal is for the students to learn the following topics in 15 practicum sessions of two hours each via self- study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. 30 Text 1- Chapter 1 1.4: Historical Remarks 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 7 1.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order 1.1: Chapter 7 Introduction, Basic theory of systems to find the solution of ODE Applications of Fourier transforms to find the solution of ODI applications of Fourier transforms to find the solution of OOInary Differential Equations. Application of Laplace transformation to find solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. A. A. Coddington: An Introduction to Ordinary Differential Equation with Applications, Macmillan, 2006. S. A. Coddington: An Introduction to Ordinary Differential Equation, PHI. <td>F</td> <td></td> <td></td> <td></td> <td></td>	F				
Practicum: 30 The goal is for the students to learn the following topics in 15 practicum sessions of two hours each via self-study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. 30 Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Boundary value problem Application of Laplace transformation to find solution of Gondary Value. Problems and solution of system of differential equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications. Application, Strict Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddingtor: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Applications, Springer.		20			
The goal is for the students to learn the following topics in 15 practicum sessions of two hours each via self- study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. A. K. Sidding & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E. A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Applications, Springer.				20	
 in 15 practicum sessions of two hours each via self- study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Boundary value. Problems and solution of system of differential equations. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddigi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Applications, Springer. 				30	
study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation. Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddigi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Application and Historical Notes, 2nd edition.					
running group discussions, supervising class seminars and referring library books for self-study and note preparation. Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006.			1		
and referring library books for self-study and note preparation. Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications of Fourier transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equatio					
preparation. Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 3: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Applications, Springer.					
Text 1- Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Sildiqi & P. Manchanda: A First Course in Differential Equation with Applications, Maemillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Application, S, Springer.					
Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Maemillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
Chapter 1 1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Maemillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.			Text 1-		
1.4: Historical Remarks Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transformation to find solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications, and their Apticard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
Chapter 2 2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications of Fourier following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Application and Historical Notes, 2nd edition. 5. M. Braun: Differential Equations and their Applications, Springer.			±		
2.3: Modeling with first order equations 2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Application, Sand edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
2.8: The existence and uniqueness theorem (proof omitted) Chapter 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of DDE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications of System of differential equations. Applications of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Applications. Applications. Applications. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3			-		
omitted) Chapter 3 V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. 5. M. Braun: Differential Equations and their Applications, Springer.					
V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
V 3.8: Mechanical and Electrical vibrations. Chapter 7 Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.			,		
Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.	V		1		
Introduction, Basic theory of systems of first order Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.			Chapter 7		
Linear Equation Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method.			-		
Text 2 2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. 5. M. Braun: Differential Equations and their Applications, Springer.					
2.14 Properties of Fourier Cosine and Sine Transforms Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.			-		
Applications of Fourier transforms to find the solution of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Ordinary Value. Problems and solution of system of differential equations. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. G.F. Simmons: Differential Equations and their Application and Historical Notes, 2nd edition.					
of ODE Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.			-		
Applications of Fourier transforms to find the solution of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
 of Boundary value problem Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer. 			Applications of Fourier transforms to find the solution		
Application of Laplace transformation to find solution of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
 of Ordinary Differential Equations. Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. S.L. Ross: Differential Equations, 3rd edition, Wiley. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. G.F. Simmons: Differential Equations and their Applications, Springer. 			• •		
Application of Laplace transformation to find solution of Boundary Value. Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.			of Ordinary Differential Equations.		
Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
Problems and solution of system of differential equations. Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equations and their Applications, Springer.					
Numerical computation of following methods using Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. 5. M. Braun: Differential Equations and their Applications, Springer.					
Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. 5. M. Braun: Differential Equations and their Applications, Springer.			equations.		
Python; Euler Method, Runge-Kutta Method, Picard's Method. 1. S.L. Ross: Differential Equations, 3rd edition, Wiley. 2. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. 3. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. 4. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. 5. M. Braun: Differential Equations and their Applications, Springer.					
 S.L. Ross: Differential Equations, 3rd edition, Wiley. A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. M. Braun: Differential Equations and their Applications, Springer. 					
 A.H. Siddiqi & P. Manchanda: A First Course in Differential Equation with Applications, Macmillan, 2006. E.A. Coddington: An Introduction to Ordinary Differential Equation, PHI. G.F. Simmons: Differential Equation with Application and Historical Notes, 2nd edition. M. Braun: Differential Equations and their Applications, Springer. 			Euler Method, Runge-Kutta Method, Picard's Method.		
	2. A.H. Si Macmillar 3. E.A. Co 4. G.F. Si 5. M. Bra	ddiqi n, 200 odding mmoi un: D	& P. Manchanda: A First Course in Differential Equation w 6. gton: An Introduction to Ordinary Differential Equation, PH ns: Differential Equation with Application and Historical N ifferential Equations and their Applications, Springer.	II. otes, 2nd e	dition.
	(2012).				

7. Ward Cheney, David Kincaid: Numerical Mathematics and Computing (6/e) Thomson Brooks/ Cole (2008).

8. Erwin Kreyszig, Advanced Engineering Mathematics (8th Edition), Willey Publication, 2010

9. H. K. Dass, Advanced Engineering Mathematics, S. Chand Publication.

10. Ravish R. Singh and Mukul Bhatt, Advanced Engineering Mathematics (4th Edition), McGraw Hill publication,2018

11. Wiley & Barrett: Advanced Engineering Mathematics, Mc Graw Hill publication,

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	2	2	2	3	2	1	-	3	-	1
CO 3	3	2	1	1	3	2	1	1	1	-	1
CO4	3	3	3	3	3	2	2	-	2	-	3
CO5	3	3	3	3	3	2	2	_	2		3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- □ Assignment/ Seminar
- Internal Exam
- Report
- □ Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Seminar	Report	End Semester Examinations
CO 1					\checkmark
CO 2			\checkmark		
CO 3	\checkmark				
CO4	\checkmark				
CO5					

Programme	B. Sc. Applied Mathematics Honours			
Course Code	AMA4CJ205			
Course Title	REAL ANALYSIS			
Type of Course	Major			
Semester	IV			
Academic Level	200 - 299			
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours
	4	3	2	75
Pre-requisites	Mathematical Logic and necessary exposure to set theory. Basic Calculus.			
Course Summary	construction of the	basic notions in set theor Real number system. The tions of limit and continu	nere after Real	functions are

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse sequences and their limits, apply limit theorems, and demonstrate understanding of monotone sequences and apply the Bolzano Wierstrass theorem and its implications on sub sequences.	An	C	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To apply the concepts of continuous functions, including combinations of continuous functions and their behaviour on intervals. Also demonstrate proficiency in determining uniform continuity and its applications.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Demonstrate proficiency in solving problems related to L'Hospital's Rule, Taylor's Theorem, Pointwise and Uniform Convergence, and Interchange of Limits.	E	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO4	To understand the concept of Mean value theorem and Riemann integral.	U	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ember (R), Understand (U), Apply (Ap), An lge(F) Conceptual Knowledge (C) Procedur	• • •		

Detailed Syllabus:

Text	Introc	luction to Real Analysis, 4/e, Robert G Bartle, Donald Sons (2011)	1 K Sherbe	ert John W1l	ey &
Module	Unit	Content	Hrs (45+30)	External Marks (70)	Interna Marks
Ι		Module 1			
	1	Section 3.1 – Sequences and their limits. (Proofs of			
		the Theorems 3.1.5, 3.1.9 and 3.1.10 are omitted)			
	2	Section 3.1 – Problems to find limits of sequences			
	3	Section 3.2 – Limit theorems. (Proofs of the			
		Theorems 3.2.3, 3.2.9, 3.2.10 and 3.2.11 are	12	Min 15	
		omitted)	12		
	4	Section 3.3 – Monotone sequences – (Proof			
		of Theorem 3.3.2 is omitted) (The topics			
		The Calculation of Square Roots and			
		Euler's Number are omitted)			
	5	Section 3.4 – Subsequences and the Bolzano-			
		Weierstrass Theorem – (Proofs of Theorems			
		3.4.4, 3.4.7, 3.4.8 and 3.4.11 are omitted)			
II		Module II			
	6	Section 3.7 - Introduction to Infinite Series upto 3.7.5			
	7	Section 3.7 – from 3.7.6 (Proofs of the Theorems 3.7.7 and 3.7.8 are omitted)	12	Min 15	10
	8	Section 4.1- Limit of functions (Proofs of all			10
	Ũ	Theorems are omitted)).			
	9	Section 5.1 – Continuous functions.			
	10	Section 5.3 – Continuous functions on Intervals			
	10	- 5.3.1 to 5.3.6			
III		Module III			
111	11	Section 5.3 – from 5.3.7 to 5.3.10			
	12	Section 5.4 – Uniform Continuity - 5.4.1 to 5.4.6			
	12	Section $5.4 - $ Uniform continuity $- 5.4.7$ to $5.4.14$		Min 15	
		Section $5.4 -$ Onnorm continuity $-5.4.7$ to $5.4.14$ Section $6.1 -$ The Derivative $-6.1.1$ to $6.1.4$	10	Min 13	
	14				
	15	Section $6.1 - \text{from } 6.1.5$ to $6.1.7$ (Proofs of the			
IV		Theorems 6.1.5 and 6.1.6 are omitted) Module IV			
1 V	1(
	16	Section 6.2- The Mean Value Theorem - $6.2.1$ to			
	17	6.2.8 (Proof of 6.2.8 is omitted)			
	17	Section 6.2- from 6.2.10 to 6.2.13 (Proof of	11	Min 15	
	18	Lemma 6.2.11 is omitted) Section 7.1 Riemann Integral – upto 7.1.3 (Without	11		
	10				
	19	proof)) Section 7.1 Riemann Integral – from 7.1.5			
	19	(Without proof))			
	20	Section 8.1 – Pointwise and Uniform			
	20	Convergence–8.1.1 to 8.1.6			

V	Practicum:	30	-	
	The goal is for the students to learn the following selected			
	topics in 15 practicum sessions via self-study and group			
	activities. The lecturer may assist by running group			20
	discussions and supervising class seminars and referring			
	library books for self-study and note preparations.			
	Session 1: Sets and Functions – Section 1.1			
	Session 2: Mathematical Induction – Section 1.2			
	Session 3: Finite and Infinite Sets – Section 1.3			
	Session 4: The Algebraic and Order Properties of R-Section 2.1			
	Session 5: Absolute Value and the Real Line - Section 2.2			
	Session 6: The Completeness property of R- Section 2.3			
	Session 7: Intervals - Section 2.5			
	Session 8: The Cauchy Criterion – Section 3.5			
	Session 9: Properly Divergent Sequences – Section 3.6			
	Session 10: Section 4.2 - Limit theorems			
	Session 11: Section 5.2 – Combinations of continuous			
	functions			
	Session 12: L'Hospital's Rules - Section 6.3			
	Session 13: Taylor's Theorem - Section 6.4 Session 14: Section 8.1 – from 8.1.7 to 8.1.10			
	Session 14: Section 8.1 – from 8.1.7 to 8.1.10 Session 15: Interchange of Limits - Section 8.2			
Reference				
Reference	1 / / 2	Waslaw		
	 Tom.M.Apostol, Mathematical Analysis, 2/e, Addison-V Richard R Goldberg, Methods of Real Analysis, 2/e, Wi 			
	 Kichard K Goldberg, Methods of Kear Analysis, 2/e, will Raymond L Wilder, Introduction to the Foundations of I 		os 2/a John V	Vilover
	Sons	widthemath	cs,2/c, Joiiii V	viicyœ
L	5013			

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	1	3	2	3	1	2
CO 2	3	3	2	3	3	1	3	2	3	1	2
CO 3	3	3	3	3	3	1	3	2	3	1	2

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	\checkmark	✓
CO 2	~	\checkmark	\checkmark	~	✓
CO 3	~	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Applied N	Aathematics Honours						
Course Code	AMA5CJ301	AMA5CJ301						
Course Title	ABSTRACT A	LGEBRA						
Type of Course	Major							
Semester	V							
Academic	300-399							
Level								
Course Details	Credit	Lecture/Tutorial	Practical/	Practicum	Total			
		per week	per w	veek	Hours			
	4	3		2	75			
Pre-requisites	Basic set the	neory, algebra of Integers, o	operations of	n functions, ł	pasic proof			
		techniqu	es etc.					
Course		xplores the algebraic cor		• •	•			
Summary	· · · · · ·	ps, Rings, Integral Domain			• •			
	A .	nentary properties, Subgro	· ·	· · ·	A ·			
	Groups of Perm	utations, Orbits, Cycles, Al	ternating Gr	oups, Cosets	and the			
	Theorem of Lag	grange are studied. Then y	we study ma	appings betv	veen groups or			
	Homomorphism	s. Finally, the Open-ended	section poin	ts to Generat	ing sets, Factor			
	Groups and Fiel	d of Quotients of an Integra	al Domain.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
CO1	Demonstrate a thorough understanding of binary operations, isomorphic binary structures, and the foundational concepts of group theory, including properties and examples of groups.	U	С	Internal Exam/ Assignment/Semi nar/ Viva/ End Sem Exam
CO2	Identify and analyze subgroups, cyclic groups, and groups of permutations, with a focus on subgroup criteria, cyclic properties, and permutation functions.	An	Р	Internal Exam/ Assignment/Semi nar/ Viva/End Sem Exam
CO3	Investigate orbits, cycles, alternating groups, cosets, and apply Lagrange's theorem to understand the relationship between subgroups and group orders.	E	Р	Internal Exam/ Assignment/Semi nar/ Viva/ End Sem Exam
CO4	Develop an understanding of homomorphisms, as well as the structural properties and differences among rings, fields, and integral domains, applying these concepts to abstract algebraic structures.	Ар	С	Internal Exam/ Assignment/Semi nar/ Viva/End Sem Exam
CO5	Synthesize knowledge from group theory, homomorphisms, and ring structures to solve theoretical and	U	С	Internal Exam/ Assignment/Semi nar/ Viva/ End

	practical problems, demonstrating the interconnections within abstract algebra.			Sem Exam					
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual								
Knov	Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge								
	(M)								

Text	A first course in abstract algebra, Fraleigh, John B. Seventh Edition, Pearson							
Book		Education India, 2003						
Mo dule	Unit	Content	Hours (45+30)	External Marks:70				
	1	Section 2- Binary Operations						
Ι	2	Section 3- Isomorphic Binary Structures	10	Min.17				
	3	Section 4- Groups						
	4	Section 5- Subgroups – Notation and Terminology, Subsets						
		and Subgroups						
	5	Section 5- Subgroups – cyclic subgroups						
	6	Section 6 -Cyclic Groups – Elementary Properties of Cyclic						
Π		Groups		Min.17				
	7	Section 6 -Cyclic Groups – The structure of Cyclic Groups,	12					
		Subgroups of Finite Cyclic Groups						
	8	Section 8 – Groups of Permutations – Permutation Groups						
	9	Section 8 – Groups of Permutations – Two Important						
		Examples						
	10	Section 8 – Groups of Permutations – Cayley's Theorem						
	11	Section 9 - Orbits, Cycles, and the Alternating Groups – Orbits,						
III		Cycles						
	12	Section 9 - Orbits, Cycles, and the Alternating Groups - Even						
		and odd Permutations, The Alternating Groups (Proof of	11	Min.18				
		theorem 9.15 is omitted)						
_	13	Section 10- Cosets and the theorem of Lagrange – Cosets						
	14	Section 10- Cosets and the theorem of Lagrange – The Theorem						
-		of Lagrange						
	15	Section 11 – Direct Products and Finitely Generated Abelian						
	16	Groups						
	16	Section 13- Homomorphisms – Structure Relating Maps	10	NP 10				
IV	17	Section 13- Homomorphisms – Properties of Homomorphism	12	Min.18				
	18	Section 18-Rings and Fields – Definitions and Basic Properties						
	19	Section 18-Rings and Fields – Homomorphisms and						
	20	Isomorphisms, Multiplicative Questions: Fields						
	20	Section 19-Integral Domains						
I L								

r		, · · ·	
V	Practicum:		
	The goal is for the students to learn the following topics in practicum		
	sessions via self-study and group activities. The lecturer may assist		
	by running group discussions, supervising class seminars and		
	referring library books for self- study and note preparation.		
	Generating Sets in Groups		
	Factor Groups		
	• The Field of Quotients of an Integral Domain		
	• Form symmetric groups of various orders, list the elements, find the		
	power of some elements, find out the product of some of the		
	elements. Find the order of the elements.		
	Form a group table using conditionals and loops. (Section 9.3,		
	Ref		
	$(3) \text{ or } \operatorname{Ref}(1)).$		
	• List S3. Find a subgroup from this group.		
	How many distinct subgroups can be found from		
	this group? List all of them.		
	• Form the Dihedral group D4, check if it is abelian using is abelian.		
	Conduct the same experiments as listing the elements, finding the		
	orders etc. as above. (Section 9.4, Ref		
	(3) or Ref (1)).		
	- T + (1 - 1)		
	• Test the command is normal () on a few subgroups of S3. (Ref (1)).		
	• Create cyclic groups. (Section 9.5, Ref (3)).		
	• Create cyclic groups. (Section 9.5, Ref (5)).		
	• Form finitely generated abelian groups. (Section 9.6, Ref (3)).		
	• Form a subgroup of a group (say, S3) (Section 9.8, Ref (3)).		
	References		
1.	Herstein, Israel Nathan. Topics in algebra. John Wiley & Sons, 199	1.	
2	Gallian, Joseph. Contemporary abstract algebra. Chapman and Ha		21.
3.			
5.		Dusiness IV	icula,
		1 6	1 1
4.	Reis, Clive. Abstract algebra: an introduction to groups, rin	igs and fi	elds.
_	World Scientific Publishing Company, 2011.		
5.	Allan Clark, Elements of Abstract Algebra, Dover Publications,	1984	
6.	C Musili, Introduction to Rings and Modules, Narosa Publication	s, 2009	
7	Delevit & Decrem Channer Theorem and CACE. A Driver		
	Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf		
	nup.//people.reeu. euu/~uaviup/352/sage-group-meory.pur		
8.	Group Theory and Sage - SageMath tutorial https://doc.sagemath.org/html/		
	en/thematic_tutorials/group_theory.html		
9.	Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa I	Publishing H	ouse.
10	0. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applicatio	ns with Sage	Exercises
	for Abstract Algebra, http://abstract.ups.edu/download/ aata- 20130816.pdf		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0			2	0	0	0	2	0	0
CO 2	1	2	3	0			2	0	2	0	3	0	0
CO 3	0	1	2	3			2	0	3	0	3	0	0
CO 4													
CO 5													

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO1	~	~	~	~	✓
CO2	~	~	~	~	✓
CO3	~	~	~	√	✓
CO4	\checkmark	\checkmark	\checkmark	\checkmark	✓

Programme	B.Sc. Applied Mather	natics Honours			
Course Code	AMA5CJ302				
Course Title	OBLECT ORIENTEI	D PROGRAMMING	USING C++		
Type of Course	MAJOR				
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lectureper week/ Tutorialper week	Practical/ Practicum per week	Total Hours	
	4	3	2	75	
Pre-requisites					
Course Summary	Object-oriented programming (OOP) introduces the concept of objects and classes, enabling modular and reusable code. Key principles include encapsulation, hiding internal details of objects; inheritance, creating new classes based on existing ones; and polymorphism, allowing objects to take on multiple forms. Students will learn to design and implement object-oriented programs using these principles, focusing on concepts like classes, objects, inheritance, and polymorphism.				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Able to develop programs with reusability, data abstraction and inheritance.	Ap	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva				
CO2	Apply the principles of virtual functions and polymorphism.	Ар	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva				
CO3	Handle exceptions in programming.	Ap	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva				
CO4	Design programs involving constructors, destructors	Ар	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva				
CO5		Ар	Р	Assignment/ Quiz/ Discussion / Seminars/ Internal Exam/Viva				
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

		Hrs (45+30)	External Marks
		(10.00)	(70)
1	Introduction to object-oriented programming, Characteristics of OOPS, Object oriented languages, comparison between		
2	Basic principles of Object Orientation-class, object, Abstraction, encapsulation, inheritance, polymorphism, modularity, and		
3	C++ Language Components: Primitive Data Types, Comments, Keywords, literals, Operators, Loops, The break and continue statement		
4	Classes and Objects, Defining classes, Creating objects		
5	Defining member function, Static class members, Friend functions		
6	Passing and returning objects to and from functions		
7	Constructors: Default constructors, Parameterized constructors		
8	Copy constructors- Destructors.		
9	Dynamic memory management, new and delete operators		
10			
11	Accessing members, this pointer		
12	Operator overloading: Overloading unary and binary operators		
13	Type conversion: Between objects and basic types and between objects of different classes		
14	Inheritance: Single Inheritance, Overriding base class members, Abstract classes, Constructors and destructors in derived classes		
15	Multilevel inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance		
16	Virtual functions, Virtual base		
17	Polymorphism: Binding, Static binding, Dynamic binding		
18	function overloading		
19	Dynamic polymorphism: Base class pointer, object slicing, late binding, method overriding with virtual functions, pure virtual functions		
20	Exception handling: Try, throw, and catch, exceptions and derived classes.		
The goa practic	al is for the students to learn the following topics in um sessions via self-study and group activities. The lecturer		
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PRACT The goa practicumany ass	 encapsulation, inheritance, polymorphism, modularity, and message passing. C++ Language Components: Primitive Data Types, Comments, Keywords, literals, Operators, Loops, The break and continue statement Classes and Objects, Defining classes, Creating objects Defining member function, Static class members, Friend functions Passing and returning objects to and from functions Constructors: Default constructors, Parameterized constructors Constructor overloading, Constructors with default arguments, Copy constructors- Destructors. Dynamic memory management, new and delete operators Pointers to objects, Pointers to object members Accessing members, this pointer Operator overloading: Overloading unary and binary operators Type conversion: Between objects and basic types and between objects of different classes Inheritance: Single Inheritance, Overriding base class members, Abstract classes, Constructors and destructors in derived classes Multilevel inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance Virtual functions, Virtual base Polymorphism: Binding, Static binding, Dynamic binding Static polymorphism: Function Overloading, Ambiguity in function overloading Dynamic polymorphism: Base class pointer, object slicing, late binding, method overriding with virtual functions, pure virtual functions 	 2 Basic principles of Object Orientation-class, object, Abstraction, encapsulation, inheritance, polymorphism, modularity, and message passing. 3 C++ Language Components: Primitive Data Types, Comments, Keywords, literals, Operators, Loops, The break and continue statement 4 Classes and Objects, Defining classes, Creating objects 5 Defining member function, Static class members, Friend functions 6 Passing and returning objects to and from functions 7 Constructors: Default constructors, Parameterized constructors 8 Constructor overloading, Constructors with default arguments, Copy constructors- Destructors. 9 Dynamic memory management, new and delete operators 10 Pointers to objects, Pointers to object members 11 Accessing members, this pointer 12 Operator overloading: Overloading unary and binary operators 13 Type conversion: Between objects and basic types and between objects of different classes 14 Inheritance: Single Inheritance, Overriding base class members, Abstract classes, Constructors and destructors in derived classes 15 Multilevel inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance 16 Virtual functions, Virtual base 17 Polymorphism: Binding, Static binding, Dynamic binding 18 Static polymorphism: Base class pointer, object slicing, late binding, method overriding with virtual functions, pure virtual functions 20 Exception handling: Try, throw, and catch, exceptions and derived classes. 21 PRACTICUM/ PRACTICALS 22 PRACTICUM/ PRACTICALS 23 PRACTICUM/ PRACTICALS 24 Prodymorphism vaself-study and group activities. The lecturer may assist by running group discussions, supervising class seminars

0	isplay Names, Roll No., and grades of 3	
	in the examination. Declare the class of	
name, Roll No. and grade.		
2. Create an array of class ob	jects. Read and display the contents of the	
array.		
3. Write a C++ program to de	eclare Struct. Initialize and display contents	
of member variables.		
4. Write a C++ program to de	eclare a class. Declare pointer to class.	
Initialize and display the cont	-	
	E class contains following members: data	
	, Employee name, Basic, DA, IT, Net	
Salary and print data member		
6. Write a C++ program to re	ad the data of N employee and compute	
	(DA=52% of Basic and Income Tax (IT)	
=30% of the gross salary).		
7. Write a C++ to illustrate th	ne concepts of console I/O operations.	
8. Write a C++ program to us	se scope resolution operator. Display the	
various values of the same va	ariables declared at different scope levels.	
9. Write a C++ program to al	locate memory using new operator.	
10. Write a C++ program to c	create multilevel inheritance. (Hint: Classes	
A1, A2, A3).		
11. Write a program that dem	nonstrates function overloading, operator	
overloading.		
12. Write a C++ program to c	create an array of pointers. Invoke functions	
using array objects.		
13. Write a program that dem	nonstrates friend functions, inline functions.	
14. Write a C++ program to ι	use pointer for both base and derived	
classes and call the member f	function. Use Virtual keyword.	
15. a) Write a program that h	nandles Exceptions. Use a Try Block to	
Throw it and a Catch Block to	o Handle it Properly. b) Write a Program to	
demonstrates user defined ex-	ceptions.	
References		
1. ANSI and Turbo C++ by Ashoke N	N. Kamthane, Pearson Education.	
	hildt, McGraw-Hill Education (India).	
	gramming Language", Pearson Education, 2004.	
u :r/ :•8		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	1	-	-	-						
CO 2	2	1	2	3	-	-						

CO 3	2	1	2	3	-	-			
CO 4	2	-	2	3	I	-			
CO 5	1	1	2	3	1	-			

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Quiz/ Discussion / Seminar
 Internal Exam
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Interna Exam	Assignment	Practical Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	√		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark

Programme	B.Sc. Appl	B.Sc. Applied Mathematics Honours				
Course Code	AMA5CJ3	03				
Course Title	NUMBER	THEORY				
Type of	Major					
Course						
Semester	V					
Academic	300-399					
Level						
Course	Credit	Lecture/	Practical/	Total		
Details		Tutorial Per week	Practicum per week	Hours		
	4	3	2	75		
Prerequisites	1.	A solid understanding of a	algebraic concepts, includ	ing equations,		
		inequalities, and functions	3.			
	2.	interest of the pitter interest	modular arithmetic, comb	pinatorics, and		
		mathematical reasoning.				
Course		e explores fundamental cor	· ·			
Summary	Topics include divisibility, modular arithmetic, prime numbers, and key theorems					
	like Fermat's Little Theorem and the Chinese Remainder Theorem. Building on					
		dations, students learn class	••	• • •		
	•	symmetric and public-key	cryptography, hash func	tions, and digital		
	signatures.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Students will understand and apply fundamental concepts of number theory, to solve problems related to integers and linear Diophantine equations.	Ар	Р	Internal Examination/ Assignment/ End Sem Examination
CO2	Students will use the Fundamental Theorem of Arithmetic, the Sieve of Eratosthenes, and basic properties of congruence to decompose numbers into prime factors, explore integer representations, and solve congruences and other modular arithmetic problems.	U	С	Internal Examination/ Seminar/ Assignment/ Report/ End Sem examination

CO3	Students will apply Fermat's Little Theorem, Wilson's Theorem, and Mobius Inversion Formula to understand divisors, prime recognition, and pseudoprime numbers, and use these results to explore divisors properties and related functions.	Ар	Р	Internal Examination/ Seminar/ Assignment/ Report/ End Sem examination			
CO4	Students will gain foundational knowledge of sum and number of divisors, mobius inversion formula and greatest integer function.	U	С	Internal Examination/ Assignment/ End Sem examination			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Text Book	Text	: Elementary Number Theory (7th Edition), David M. Bu	rton, Mc(Graw-Hill.
Module	Unit	Content	Hours (45+30)	External Marks:70
	1	2.2: The Division Algorithm		
	2	2.3: The Greatest Common Divisor(Definition 2.1 up to		
		and including of corollary to theorem 2.3)		
	3	2.3: The Greatest Common Divisor(Definition 2.3 –		
Ι		Theorem 2.6)		
	4	2.4: The Euclidean Algorithm(up to and including		
		corollary of Theorem 2.7)		
	5	2.4: The Euclidean Algorithm(Definition 2.4, Theorem		
		2.8, corollary		
	6	2.5: The Diophantine Equation $ax + by = c$		
	7	3.1: The Fundamental Theorem of Arithmetic(up to and		
II		including corollary 2 of Theorem 3.1)		
		3.1: The Fundamental Theorem of Arithmetic (Theorem	10	Min. 15
	8	3.2 to up to and including Theorem 3.3)		
	9	3.2: The Sieve of Eratosthenes		
	10	4.2: Basic Properties of Congruence (up to and including		
III		theorem 4.3)		
	11	4.2: Basic Properties of Congruence (Theorem 4.3		
		onwards)		
	12	4.4 Linear congruences		
	13	5.3: Fermat's Little Theorem and Pseudoprimes		
	14	5.4: Wilson's Theorem	20	Min. 15

	15	6.1 The Sum and Number of Divisors (up to and including					
IV		theorem 6.2)	10	Min. 15			
	16	6.1 The Sum and Number of Divisors (Definition 6.2					
		onwards)					
	17	6.2 The Mobius Inversion Formula (up to and including					
		Theorem 6.5)					
	18	6.2 The Mobius Inversion Formula (Theorem 6.6					
		onwards)					
	19	6.3 The greatest integer function (up to and including					
		Example 6.2)					
	20	6.3 The greatest integer function (Theorem 6.10 onwards)					
V		Practicum/ Practicals:					
		The goal is for the students to learn the following topics in					
		practicum sessions via self-study and group activities. The					
		lecturer may assist by running group discussions,					
		supervising class seminars and referring library books for					
		self-study and note preparation.					
			30				
		3.3 The Goldbach Conjecture	•••				
		4.1 Carl Friedrich Gauss					
		4.3 Binary and Decimal Representations of Integers					
		7.2 Euler phi function					
		7.4 Some properties of Euler phi- function					
		References:					
		ical Introduction to Modern Number Theory, Kenneth Ireland	l and Mich	ael Rosen,			
	1 0	r Science + Business Media, LLC.	15.14	TTT ' 1			
		oduction to the Theory of Numbers (4th Edition), G. H. Hardy at the Clarendon Press.	y and E. M	. Wright,			
3.	3. An Introduction to the Theory of Numbers, Ivan Niven, Herbert S. Zuckerman and Hugh L.						

- 3. An Introduction to the Theory of Numbers, Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, Wiley (1991), ISBN 9780471625469 (ISBN10: 0471625469).
- 4. Jeffrey Hoffstein: Jill Pipher, Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer International Edition.
- 5. H. Deff's & H. Knebl: Introduction to Cryptography, Springer Verlag, 2002.

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CC	D 1	3	3	3	3			3	2	2	1	3	1	2
СС	02	2	2	2	2			3	2	2	3	3	1	2

CO 3	2	2	1	1		2	3	2	2	3	2	3
CO 4	2	2	2	2		2	3	2	2	2	3	2

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Report
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Report	End Semester Examinations
CO1		\checkmark			\checkmark
CO2	\checkmark		\checkmark	\checkmark	\checkmark
CO3	\checkmark		\checkmark	\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark	\checkmark
CO5	\checkmark		\checkmark	\checkmark	

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Programme	B. Sc. Applied	Mathematics Honours						
Course Code	AMA6CJ304							
Course Title	NUMERICAI	COMPUTING USING PY	THON					
Type of Course	Major	Major						
Semester	VI							
Academic Level	300- 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	3	2	75				
Pre-requisites	1. Real analysi	s	· · ·					
	2. Linear algeb	pra						
	3. Basics of Py	thon Programming						
Course Summary	course facilitat	miliarizes students with the test students to apply results fealysis of numerical solutions.		5				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and apply the Bisection Method, Iteration Method, Newton Raphson Method, and Secant Method to solve algebraic and transcendental equations numerically.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Implement interpolation methods such as Newton's formulae, Lagrange's interpolation formula, and divided differences to approximate functions from discrete data.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Implement numerical methods such as Euler's method, Modified Euler's Method, Runge-Kutta method, and Adams-Moulton Method to solve ordinary differential equations (ODEs).	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Analyse (Knowledge(F) Conceptual Knowledge (C) Proc			ognitive Knowledge

Detailed Syllabus:

Text B	ook	 [1]. S. S. Sastry, Introductory Methods of Numerical Analysis (5/e), PHI Learning (2012) [2]. Dimitrios Mitsotakis: Computational Mathematics: An Introduction to Numerical Analysis and Scientific Computing with Python, CRC Press (2023), ISBN 978-1-032-26240-6. [3]. Jupyter Notebooks of [2] available at: <u>https://github.com/dmitsot/computational_mathematics</u> 	
Module	Unit	Content	Total Hrs
Ι		Numerical Solutions of Algebraic and TranscendeIntal equations (Text 1)	12
-	1	2.1 Introduction	
	2	2.2 Bisection Method	_
	3	2.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional)	
	4	2.5 Newton- Raphson Method (Generalized Newton's Method is optional)	
	5	2.7 Secant Method	
Π		Interpolation(Text 1)	12
	6	3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
	7	3.6 Newton's formulae for interpolation (up to and including Example3.5)	
	8	3.6 Newton's formulae for interpolation (From Example 3.6)	
	9	3.9.1 Langrange's interpolation formula	
	10	3.10 Divided differences and their properties	
	11	3.10.1 Newton's General interpolation formula	
III		Numerical Differentiation and Integration(Text 1)	12
	12	6.1 Introduction, 6.2 Numerical Differentiation (6.2.1, 6.2.2 and 6.2.3 are optional)	
	13	6.4.1 Trapezoidal Rule	
	14	6.4.2 Simpson's 1/3-Rule	
	15	6.4.3 Simpson's 3/8 Rule	
	16	6.10 Numerical Double Integration	
IV		Numerical Solutions of Ordinary Differential Equation(Text 1)	12
	17	8.1 Introduction	_
	18	8.2 Solution by Taylor's series,	_
	19	8.4 Euler's method (8.4.1 is optional)	_
	20	8.4.2 Modified Euler's Method	_
	21 22	8.5 Runge-Kutta method 8.6.1 Adams-Moulton Method	_
V	22	8.6.1 Adams-Moulton Method Numerical Algorithms and Lab Practicals	12
v	1	Jupyter Lab and Notebooks. Google Colab. Instructions in [6] and [7]. Quick review of Python Programming. Ch 1 Notebook from [3].	12

	2	Continue Quick Review of Python. Notebook [9]. Numpy and Scipy review from [7]. Ch 2 Notebook from [3].
	3	Bisection Method. Algorithm and Program. Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2]. Optional: Program to compute speed of convergence.
		Optional: False Position variant from [12].
	4	Fixed Point Method (Iteration Method). Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.2 of [2].
	5	Newton-Raphson Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.3 of [2].
	6	Secant Method. Algorithm and Program. Notebook: Ch 5 of [3]. Reference: 5.4 of [2].
	7	Fast computation using SciPy.Optimize. Notebook: Ch 5 of [3]. Reference: 5.6 of [2].
	8.	Lagrange Interpolation. Notebook: Ch 6 of [3]. Reference: 6.1 of [2].
	9	Newton's method for Interpolation using Divided Differences. Notebook: Ch 6 of [3]. Reference: 6.2 of [2].
	10	Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2].
	11	Numerical Differentiation. Forward and Backward Differences. First Order and Second Order Derivative Approximations. Notebook: Ch 8 of [3]. Reference: 8.1 of [2].
	12	Numerial Integration. Midpoint Rule. Composite Trapezoidal Rule. Composite Simpson's Rule. Notebook: Ch 7 of [3]. Reference: 7.1. of [2].
	13	The Module scipy.integrate. Trapezoidal, Simpson. Reference: 7.4 of [2]. Notebook: Ch 7 of [3].
_	14	Euler's Method. Improved Euler's Method. Reference: 8.2 of [2]. Notebook: Ch 8 of [3].

References:

1. F.B. Hidebrand : Introduction to Numerical Analysis, TMH.

2. J.B. Scarborough : Numerical Mathematical Analysis, Oxford and IBH

3. Joakim Sundnes, Introduction to Scientific Programming with Python. Springer (2020). ISBN 978-3030-50355-0. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-030-50356-7</u> 4. Sven Linge and Hans Petter Langtagen, Programming for Computations -- Python. A Gentle Introduction to Numerical Simulations With Python. Springer (2018). ISBN 978-3-319-81282-3. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-319-32428-9</u>

Note: 1) Optional topics are exempted for end semester examination.

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

3) Module V is algorithms and lab computations. Algorithms for each numerical method can be taught along with the Python code in lab sessions.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	3	3	0	2
CO 2	2	3	3	2	3	1	3	3	3	0	2
CO 3	3	3	3	2	3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/Seminar Internal Exam Viva Final Exam

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	~
CO 2	√	\checkmark	✓	~	✓
CO 3	√	\checkmark	\checkmark	~	\checkmark

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours				
Course Code	AMA6C	AMA6CJ305				
Course Title	Complex	x Analysis				
Type of Course	Major					
Semester	6					
Academic Level	300-399					
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours		
		per week	per week			
	4	4		4		
Pre-requisites	Basics of	f real number syste	em and calculus			
Course Summary	This cou	rse begins with the	e concepts of complex	x numbers.		
	-	1 · 1	of complex numbers,	1		
	-		complex functions in	0		
	power fu	inctions and nth ro	ot functions. Then we	e discuss		
	,	•	iability and analyticit			
	complex	functions. Cauchy	y Riemann equations	and		
		50	lso studied. Finally th			
	discusses	s some standard co	omplex functions like	Exponential		
	function	s, Logarithmic fun	ctions, Trigonometric	e and		
	Hyperbo	lic functions.				

Course Outcome (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO1	Visualize and Interpret Complex Numbers in the Complex Plane	An	F	Intenal Exam/Viva/ Assignment/S eminar /End Sem Exam
CO2	To understand the difference between differentiability and analyticity of a complex function and construct examples.	С	F	Intenal Exam/Viva/ Assignment/S eminar /End Sem Exam
CO3	To understand definition of complex integral, its properties and evaluation and To know a few fundamental results on contour integration theory such as Cauchy's theorem, Cauchy- Goursat theorem and their applications.	E	Р	Intenal Exam/Viva/ Assignment/S eminar /End Sem Exam

CO4	To see another application of residue theory in locating the region of zeros of an analytic function.	Ар	Р	Internal Exam/Viva/ Assignment/S eminar /End Sem Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)							

Detailed Syllabus:

Textbook		rst Course in Complex Analysis with Application 2 nd Edi	tion; denn	is G. Zill	
		ck D. Shanahan			
Module Unit		Content	Hrs	Marks	
		(75)	Ext : 80		
		Module I			
	1	1.1Complex Numbers and Their Properties			
Ι	2	1.2Complex Plane	12		
1	3	1.3Polar Form of Complex Numbers	12		
	4	1.4 Powers and Roots			
	5	1.5 Sets of Points in the Complex Plane			
		Module II			
	6	2.1Complex Functions			
	7	2.2Complex functions As Mappings			
II	8	2.6 Limits and continuity(Branches, Branch cut points	12		
11		omitted)	12		
	9	3.1Differentiability and Analyticity			
	10	3.2Cauchy- Riemann Equations			
	11	3.3Harmonic Functions			
	Module III				
	12	5.2complex Integrals			
III	13	5.3Cauchy -Goursat Theorem(Proof of Cauchy' theorem omitted)	12		
	14	5.4Independence of Path			
	15	5.5Cauchy's Integral Formula and Their Consequences			
		Module IV			
117	16	6.2taylor Series	10		
IV	17	6.3Laurent Series	12		
	18	6.4Zeros and Poles			
	19	6.5Residues and Residue Theorem			
V		Module V (Open Ended)	12		

1		1	1
	2.3 Linear Mapping		
	2.4 Special Power Functions		
	2.5Reciprocal Functions		
	2.6 Branches, Branch cut points.		
	2.7Applications 3.4		
	Applications. 5.3Proof of		
	Cauchy's Theorem		
	5.6Applications		
	6.6 Some consequences of the Residue Theorem		
	7.1Conformal Mapping		
	7.2Linear Fractional Transformation		
	Lab work to be performed		
	1. Declaring a complex number and graphical representation.		
	E.g.		
	Z1=3+4i, Z2=4-7i		
	2.Program to discuss the algebra of complex numbers		
	Z1=3+4i, Z2=4-7i, then find Z1+Z2,Z1-Z2, Z1*Z2 and Z1/Z2		
	3.To find the modulus ,conjugate,phase angle of an array of		
	complex numbers		
	e.g. Z=[2+3i,4-2i,6+11i,2-5i]		
	4. To plot the complex functions and analyze the graph. E.g.		
	$f(z)+z, iz, z^2, e^z e^z e^z$		
Referenc	es		
1. Ja	mes Ward Brown, Ruel Vance Churchill: Complex variables and		
applicati	· ·		
	-Hill Higher Education, (2009)		
	hn B. Conway, Functions of one complex variable (2ndedn.),		
	international student edition, 1973		
1 8	,		
3. A	an Jeffrey: Complex Analysis and Applications(2/e) Chapman and		
Hall/CR	C Taylor Francis Group (2006)		
4. Sv	vaminathan Ponnusamy, Herb Silverman: Complex Variables with		
Applicat	ions Burkhouse Boston (2006)		
5. Jo	hn H. Mathews & Russell W. Howell: Complex Analysis for		
	atics and Engineering (6 /e)		
	A Priestly: Introduction to Complex Analysis(2/e) Oxford University	7	
$\begin{array}{c} 0. \\ \text{Press} (20) \end{array}$		/	
11055 (20	<i>JUJ J</i>		

7. Jerrold E Marsden, Michael J Hoffman: Basic Complex Analysis(3/e) W.H Freeman, N.Y.(1999)

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	-	1	2	-	1	-	1	-	1
CO 2	3	3	3	-	3	-	1	-	1	-	1
CO 3	3	2	2	1	3	-	1	_	2	_	2
CO 4	3	2	2	1	3	-	1	-	1	-	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

		Internal Exam	Assignment	Seminar	Report	
						End Semester Examinations
СО	1	\checkmark			\checkmark	\checkmark
СО	2	\checkmark	\checkmark	\checkmark		\checkmark
CO	3		\checkmark			\checkmark
CO4	4		\checkmark			\checkmark

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours				
Course Code	AMA6C	LJ306				
Course Title	Theory of	f Equations and Gr	aph Theory			
Type of Course	Major					
Semester	6	6				
Academic Level	300-399	300-399				
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours		
	4	3	2	5		
Pre-requisites	Sets, mat	rices, integration, d	ifferentiation			
Course Summary			wledge of basic conc			
	theory and	theory and integral equations, solution of Fredholm and				
	Volterra	integral equation	S.			

COURSE OUTCOME(CO)

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO 1	Students will be able to perform and apply key polynomial operations, including multiplication, division and evaluation through Horner's process	Ар	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO 2	Students will understand and utilize the Remainder Theorem, apply the Taylor formula to expand polynomials and compute the highest common divisor of two polynomials to simplify and solve algebraic expressions efficiently.	AP	р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO 3	Students will be able to understand the concepts of algebraic equations and their roots, apply the Fundamental Theorem of Algebra, factor polynomials into linear factors, and determine the multiplicity of roots.	U	F	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO 4	Students will be able define and recognize the key concepts of graph.	U	С	Internal Exam/ Assignment/S eminar/ Viva/Report/

				End Sem Exam			
CO 5	Students will be able to analyze Euler tours and distinguish between plane and planar graphs	An	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam			
CO 6	Students will be able to apply basic concepts of graph theory to solve graph-related real life problems and understand the structural properties of various types of graphs.	Ар	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam			
	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)						

Text Book	1. Theorem	ry of Equations: J V Uspensky McGraw Hill Book Company, Inc. ISBN:					
	07-066	56735-7.(2004),					
	2.A Fir	st Look at Graph Theory: John Clark & Derek Al	lan Holton	, Allied			
	Publish	Publishers, First Indian Reprint 1995					
Module	unit	Content	Hours	Marks			
I	1	Chapter II (Text 1)	15	Min 15			
		II.1 Integral rational functions or polynomials.					
		II.2 Multiplication of polynomials.					
	2	II.3 Division of polynomials, quotient and					
		remainder, method of detached coefficients					
		II.4 The remainder theorem					
	3	II.5 Synthetic Division					
		II.6 Horner's process					
	4	II.7 Taylor formula, expansion of a					
		polynomial in powers of $x - c$					
	5	II.8 Highest common divisor of two					
		polynomials					
II	6	Chapter III (Text 1)	15	Min 15			
		III.1 Algebraic equations, roots, maximum					
		number of roots					
	7	III.2 Identity theorem					
		III.3 The Fundamental theorem of Algebra					
		(statement only), factorisation to linear					
		factors, multiplicity of roots					
	8	III.4 Imaginary roots of equations with real					
		coefficients					

	9	III.5 Relations between roots and coefficients		
	10			
III	11	Text 2: Graph Theory	10	Min 15
		1.1 Definition of a graph		
		1.2 Graphs as models		
	12	1.3 More definitions		
		1.4 Vertex degrees		
	13	1.5 Sub graphs		
	14	1.6 Paths and Cycles		
	15	1.7 Matrix representation of a graph [up to		
		Theorem 1.6; proof of Theorem 1.5 is		
		omitted]		
IV	16	2.1 Definitions and Simple Properties	10	Min 15
	17	2.2 Bridges [Proof of Theorem 2.6 and		
		Theorem 2.9 are omitted]		
	18	2.3 Spanning Trees		
	19	2.6 Cut Vertices and Connectivity [Proof of		
		Theorem 2.21 omitted]		
	20	3.1 Euler Tour [up to Theorem 3.2, proof of		
		Theorem 3.2 omitted]		
	21	5.1 Plane and Planar graphs [Proof of		
		Theorem 5.1 omitted]		
V		OPEN END	10	
		The binary number system, logic circuit		
		elements, addition of binary numbers,		
		subtraction of binary numbers, accumulation,		
		binary multiplication		
		3.3 Hamiltonian Graphs [Proof of Theorem		
		3.6 omitted]		
		5.2 The Euler's formula		
Reference				
		Discrete Mathematics with Applications (4/e), Broo	oks/ Cole	e Cengage
oorning ((2011) ISE	3N: 978-0-495-39132-6.		

2. Kenneth H. Rosen: Discrete Mathematics and Its Applications (7/e), McGraw-Hill, NY (2007), ISBN: 978-0-07-338309-5.

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Trapp.	pping of COs with 1 bos and 1 os.										
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	3	2	2	3	2	1	-	3	-	1
CO 3	2	2	2	3	3	2	1	1	1	-	1

Mapping of COs with PSOs and POs :

CO 4	2	1	2	3	3	1	2	1	3	-	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar Internal Exam Report Final Exam (70%)

	Internal Exam	Assignment	Seminar	Report	End Semester Examinations
CO 1			\checkmark		\checkmark
CO 2				\checkmark	\checkmark
CO 3	\checkmark		\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark			\checkmark

Mapping of COs to Assessment Rubrics :

Programme	B. Sc. Applied Mathe	ematics Honours						
Course Code	AMA7CJ401	AMA7CJ401						
Course Title	INTRODUCTION	TO TOPOLOGY						
Type of Course	Major							
Semester	VII							
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	1. Mathematical Logi	c and necessary exposure	e to set theory.					
	2. Basic Calculus							
	3. Real Analysis.							
Course	The subject of genera	l topology is introduced	with motivation	ns from the theory				
Summary	of real functions. Bas	ic concepts like open an	d closed sets, i	interiors, closures,				
	boundaries, neighborhoods, bases and sub-bases are introduced. After a							
	discussion of continu	ity and related topics, t	he compactnes	ss, connectedness,				
	and various countable	ility axioms are discuss	sed in some d	letail. The course				
	concludes with separa	ation axioms.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and classify topological spaces, bases, and subspaces, and apply these concepts to identify examples of different topological structures.	Ар	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and understand the concepts of continuity and related topological properties.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyze their applications in solving problems related to paths and separation.	Ε	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	Remember (R), Understand (U), A ual Knowledge(F) Conceptual Kr		•	
	ł	Knowledge (M		

Detailed Syllabus:

Textbook	James	R. Munkres- Topology A First Course, 2 nd edition- P.	rentice Hall	of India.
Module	Unit	Content	Hrs (45+30)	External Marks (70)
Ι	Modu	le I		
	1	Topological spaces		
	2	Basis for a Topology		
	3	The Order Topology	11	Min.15
II	Modu	le II		
	4	The Product Topology on $X \times Y$		
	5	The Subspace Topology		
	6	Closed Sets and Limit Points	12	Min.15
Ш		Module III		
	7	Continuous Functions (Constructing Continuous Functions is omitted)		
	8	The Metric Topology (Proofs of theorems 20.4 and 20.5 are omitted)		
	9	Connected Spaces	12	Min.15
IV	Modu	le IV		
	10	Compact Spaces		
	11	The Countability Axioms (Proofs of theorems are omitted)	-	
	12	The Separation Axioms (Example 3 is omitted)	10	Min.15
V		PRACTICUM/PRACTICALS		
	The g	oal is for the students to learn the following selected		
		in 9 practicum sessions via self-study and group		
		ies. The lecturer may assist by running group		
		sions, supervising class seminars and referring		
	library	books for self-study and note preparation.	_	
		Constructing Continuous Functions, Theorem 18.2, Theorem 18.3, Theorem 18.4	30	
	2	The product topology, box topology, Comparison		
		of the box and product topologies, Theorems on product topology.		
	3	The Metric Topology (continued)	_	
	4	The Quotient Topology; important definitions and examples (proofs of theorems are omitted).		

5	Connected Subspaces of the Real Line	
6	Components and Local Connectedness.	
7	Compact Subspaces of the Real Line	
8	Local Compactness (Definitions, examples and	
	statements of proofs only)	
9	Normal Spaces (Definitions, examples and	
	statements of important theorems only)	

References:

- 1. C. Wayne Patty, Foundations of Topology, Second Edition- Jones & Bartlett India Pvt.Ltd., New Delhi, 2012.
- 2. K. D. Joshi, Introduction to General Topology, New Age International (P) Ltd. Publishers.
- 3. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill.
- 4. S. Willard, General Topology, Addison Wesley Publishing Company.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	0	3	0	3	0	3	0	0
CO 2	3	2	2	1	3	0	3	0	3	0	0
CO 3	3	3	3	2	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/Report	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	✓
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Applied Mathematics Honours							
Course Code	AMA7CJ402							
Course Title	ADVANCED LINE	AR ALGEBRA						
Type of Course	Major							
Semester	VII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours				
	4	3	2	75				
Pre-requisites	2. Matrices and Deter							
Course Summary	3. Systems of Linear Equations and their solutions Vector spaces in the abstract are introduced. Linear transformations are introduced as structure preserving maps between them. Representation of linear transformations as matrices is discussed. The algebraic dual and double dual space of a vector space are studied in some detail. The concept of the transpose of a linear transformation is introduced and discussed as well. The course then passes on to spectral theory on finite dimensional spaces, introducing characteristic values and vectors. After an extended discussion leading up to the characterisation of diagonalisable and triangulable operators, an elementary decomposition of a linear operator is established. The course ends with a short discussion of inner products and inner product spaces.							
Course Outcom	nes (CO):							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and apply the concepts of vector spaces, subspaces, and bases to solve problems involving linear independence and dimensionality.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of linear transformations and their algebraic representations using matrices.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam

CO3	Synthesize the concepts of linear functionals, the double dual space, and the transpose of linear transformations to understand advanced topics in linear algebra and apply them to canonical forms	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam					
# - Factua	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

Textbook	Linear Algebra, Kenneth Hoffman and Ray Kunze, 2 nd Edition, Prentice Hall of India, 1991.							
Module	Unit	Unit Content		External Marks (70)				
Ι		Vector Spaces						
	1	Section 2.1 – Vector Spaces						
	2	Section 2.2 – Subspaces		Min.15				
	3	Section 2.3 – Bases and Dimension – up to Theorem 5	12					
	4	Section 2.3 – Bases and Dimension – rest of the section starting from Theorem 5						
	5	Section 2.4 – Coordinates – up to and including Theorem 7						
	6	Section 2.4 – Coordinates – rest of the section						
II		Linear Transformations						
	7	Section 3.1 – Linear Transformations – upto and including Example 7						
	8	Section 3.1 – Linear Transformations – rest of the section.	11	Min.15				
	9	Section 3.2 – The Algebra of Linear Transformations – up to and including Theorem 5						
	10	Section 3.2 – The Algebra of Linear Transformations – rest of the section						
	11	Section 3.3 – Isomorphism						

	-			
	12	Section 3.4 – Representation of Transformations by Matrices – up to and including Example 15		
III		Linear Transformations		
	13	Section 3.4 – Representation of Transformations by Matrices – rest of the section		
	14	Section 3.5 – Linear Functionals – upto and including Example 22.		Min.15
	15	Section 3.5 – Linear Functionals – rest of the section.	11	
	16 Section 3.6 – The Double Dual – upto and including Theorem 18.			
	17 Section 3.6 – The Double Dual – the rest of the section			
	18	Section 3.7 – The Transpose of a Linear Transformation – up to and including Theorem 22		
	19	Section 3.7 – The Transpose of a Linear Transformation – rest of the section.		
IV		Elementary Canonical Forms		
	20	Section 6.1 and 6.2 – Introduction and Characteristic Values	11	Min.15
		Section 6.3 – Annihilating Polynomials (Proof of Theorem 4 omitted)		
	22	Section 6.4 – Invariant Subspaces.		

V		Practicum						
	0	al is for the students to learn the following selected						
	topics	s in 10 practicum sessions of three hours each via						
		lf-study and group activities. The lecturer may assist by						
		nning group discussions, supervising class seminars						
	and re	eferring library books for self-study and note						
	prepa	rations.						
	1	Section 1.3 – Matrices and Elementary Row						
		Operations						
	2	Section 1.4 – Row Reduced Echelon Matrices						
	3	Section 1.5 – Matrix Multiplication						
	4	Section 1.6 – Invertible Matrices						
	5	Section 6.4 – Triangulation and Diagonalisation						

6	Section 6.6 – Direct-sum Decompositions	30
7	Section 6.7 – Invariant Direct Sums	
8	Section 8.1 – Inner Products	
9	Section 8.2 – Inner Product Spaces	
10	Section 6.8 – The Primary Decomposition Theorem	

References

- 1. Finite Dimensional Vector Spaces, P. R. Halmos, Narosa Pub House, 1980..
- 2. Linear Algebra, S. Lang, Addison Wesley Pub Company, 1972.
- 3. Topics in Algebra, I. N. Herstein, John Wiley & Sons, 2006.
- 4. Linear Algebra, R. R. Stoll & E. T. Wong, Academic Press International Edition, 1968.

Suggested Programming Exercises for Practicuum :

- 1. Form a four-dimensional vector space over Q. Take two vectors from this, find its span. (Chapter VS, Ref (1))
- 2. Find basis of the vector subspace found in the above question. (Chapter VS, Ref (1))
- 3. Take some elements from this vector space, test for linear independence. (Chapter V Section LI, Ref (1))
- 4. Form two vector spaces over Q. Define symbolic linear transformations between them, find the image of selected elements under it. (Chapter LT, Ref (1))
- 5. Define linear transformations (LT) from matrices. (Chapter LT, Ref (1))
- 6. Check if linear transformation is injective (Section ILT, Ref (1))
- 7. Define two LT, add them. Find the individual matrices of these with respect to certain bases. Verify that the matrix of the sum of LT is the sum of matrices of individual LT .(Section OLT, , Ref (1)))
- 8. Find the kernel of an LT, find its nullitty. (Section ILT, Ref (1))
- 9. Find inverse of LT (Section IVLT, Ref (1))
- 10. Take a matrix, find Eigenvalues, Eigen vectors, check if it is

diagonalizable, diagonalize if it is. (Chapter E ILT, Ref (1))

References

- 1. Robert A. Beezer, Sage for Linear Algebra A Supplement to A First Course in Linear Algebra http://linear.ups.edu/sage-fcla.html
- 2. Sang-Gu Lee *et al.*, Linear Algebra with Sage https://www.researchgate.net/ publication/280093747_Linear_Algebra_with_Sage_BigBook_Free_ebook_English_ Version_All

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	2
CO 2	3	3	2	1	3	0	3	2	3	0	2

CO 3	3	3	2	2	3	0	3	2	3	0	3

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

Correlation Levels:

		_Assessment Rubrics:
Level	Correlation	
-	Nil	 Assignment/ Report Seminar
1	Slightly / Low	Internal Exam
2	Moderate / Medium	 Viva Final Exam (70%)
3	Substantial / High	- 🛛 Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	\checkmark	~	~	\checkmark
CO 2	√	\checkmark	\checkmark	√	\checkmark
CO 3	√	\checkmark	\checkmark	~	\checkmark

Programme			B.Sc. A	pplied Mathematics	Honours			
Course Code			AMA7CJ403					
Course Title				graphy and Automat	a Theory			
Type of Course			Major					
Semester			VII					
Academic Level			400-49	9				
Course Details	Credits		Lecture	/Tutorial per week	Practical/week	Total Hours		
	4		4			60		
Pre-requisites			Elemen linear a	tary number theory lgebra	, algebra, combi	natorics, basic		
Course Summary			Cryptography is a fundamental aspect of information security that involves creating secure communication encoding messages to make them unintelligible to unauthorised users and Cryptography relies heavily of mathematical concepts. This course covers a wide ran of topics, starting with Classical Cryptography, which includes simple cryptosystems. It also delves into cryptanalysis of these systems. Moreover, the course includes a section on Cryptographic Hash Functions, focusing on their role in ensuring data integrity. Stud- gain a comprehensive understanding of these concept and techniques, equipping them with the knowledge a skills needed to analyze and implement secure cryptographic systems.					
Course Outcomes (CO): CO	CO Statement	Cognitive	e Level*	Knowledge Category#	Evaluation To	ols used		
CO1	Construct the parity check/generator matrix of a linear code. Design cyclic codes of a given rate and distance parameters.	Ар		С	Internal Exam/Assignm Seminar/ Viva / Sem Exam			

CO2	Calculate bounds on rate and distance of a given linear code using various bounds.	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Decode a cyclic code using various standard decoding procedures.	Ар	Р	Internal Exam/Assignm ent/ Seminar/ Viva / End Sem Exam
CO4	Gain the Knowledge of	U	F	Internal Exam/Assignm ent/ Seminar/ Viva /
	basic kinds of finite automata and their capabilities			End Sem Exam
	er (R), Understand (U), App Inowledge(F) Conceptual K			e (E), Create (C) vledge (P) Metacognitive Knowledge

Text Book	 1.Cryptography Theory and Practice 3_{rd} Edition, Douglas R. Stinson, , Chapman & Hall, 2.Theory Computer Science (Automata, Languages and Computation) by K.L.P. Mishra and N. Chandrasekhar, PHI 				
Module	Unit	Content	Hrs/ week	External Marks	
Ι	1	Chapter 1: Section 1.1-1.1.1: Some Simple Cryptosystems, Shift Cipher	12	MIN 15	
	2	Chapter 1: Sections 1.1.2 & 1.1.3: The Substitution Cipher, Affine Cipher			
Cipher, The Hill C		Chapter 1: Sections 1.1.4 & 1.1.5: The Vigenere Cipher, The Hill Cipher			
		Chapter 1: Sections 1.1.6 : The Permutation Cipher			
	5	Chapter 1: Sections 1.1.7 : Stream Ciphers			
II	6	Chapter 1: Section 1.2 & 1.2.1 : Cryptanalysis: Cryptanalysis of the Affine Cipher	12	MIN 15	
	7	Chapter 1: Section 1.2.2 : Cryptanalysis of the Substitution Cipher			

	8	Chapter 1: Section 1.2.3 : Cryptanalysis of the Vigenere Cipher		
	9	Chapter 1: Section 1.2.4 : A known plain text attack on the Hill Cipher		
	10	Chapter 1: Section 1.2.5 : Cryptanalysis of the LFSR-based Stream Cipher.		
III	11	Chapter 2 : Sections 2.1, 2.2 : Introduction, Elementary Probability Theory	10	MIN 15
	12	Chapter 2 : Sections 2.3: Perfect Secrecy		
	13	Chapter 2 : Sections 2.4: Entropy, Huffman Encodings		
	14	Chapter 2 : Sections 2.5: Properties of Entropy		
	15	Chapter 2 : Sections 2.6: Spurious Keys and Unicity Distance		

	16	Chapter 2 : Sections 2.7: Product Cryptosystems		
IV	17	TEXT 2 2.3 strings and their properties2.3.1 Operations on strings2.3.2 Terminal and Nonterminal symbols3.1Definition of an Automation	14	
	19	 3.2 Description of a finite Automation 3.3 Transition system 3.4 Properties of transition functions 		
	20	3.5Acceptability of a string by a finite automation3.6Nondeterministic finite state machines		
	21 22	3.7deterministic finite state machines 3.9Minimization of finite Automata		

	23	4 Formal Languages4.1 Basic Definitions and Examples4.1.1 Definition of a Grammar		
	24	4.1.2 derivations and Language Generated by a Grammar		
V		Text 1:Block Ciphers Cryptographic Hash Functions Text 2: 3.8Mealy and Moore Models	12	
		3.8.1 Finite Automata with Outputs3.8.2Procedure for transforming a Mealy Machine into a Moore Machine.3.8.32Procedure for transforming a Moore Machine into a Mealy Machine Formal		
		Languages Regular Grammars		
1. John E. Hopcrof Languages and Cor	t, Rajeev nputatior	Motwani, Jeffrey D. Ullman (2007), Introduction to A a, 3 rd edition, Pearson Education, India.	utomata	1 Theory
3. Theory of D, PHI	Finite Au Introduct	nputer science by E.V. Krishna Murthy, East-West Prest tomates with an introduction to formal languages by C ion to Formal Languages and Automata, Narosa Publi	Carrel J a	C
	pser, Intro	oduction to Theory of Computation, Cengage Learning	g India I	Private
Prentice Hall, ISBN 7. J. E. Savag	l: 013262 e, Model	 Papadimitriou, Elements of Theory of Computation, 24788. s of Computation, Exploring the Power of Computing, prown.edu/~jes/book/. 		
	Introduct	tion to Languages and Theory of Computation, Tata M	[cGraw]	Hill, 3rd

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
<u> </u>	3	2	2	1	3	3	3	3	0	0	3
CO 1	3	1	1	1	3	3	3	3	0	0	3
CO 2	3	2	1	1	3	3	3	3	0	0	3
CO 3											
CO4	3	2	1	1	3	3	3	3	0	0	3

Correlation Levels:

Level	Correlation	Assessment Rubrics:
-	Nil	Assignment/ Rep
1	Slightly / Low	Seminar Internal Exam
2	Moderate / Medium	U Viva Final Exam (70%
3	Substantial / High	

Assignment/ Report Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
СО	1 🗸	V	~	~	\checkmark
СО	2	~	~	~	\checkmark
СО	3 🗸	~	~	√	~
CO	↓ ✓				\checkmark

Programme	B. Sc. Applied	B. Sc. Applied Mathematics Honours				
Course Code	AMA7CJ404	AMA7CJ404				
Course Title	PARTIAL D	PARTIAL DIFFERENTIAL EQUATIONS				
Type of Course	Major					
Semester	VII					
AcademicLevel	400-499					
Course Details	Credit	Lecture/Tutorial	Practical/	Total		
		per week	Practicum	Hours		
			per week			
	4	3	2	75		
Pre-requisites	1. Real Analy	sis				
	2. Basic Conc	epts of Vector functions				
	3. Ordinary D	ifferential Equations				
Course	This introduc	tory Partial Differential E	Equations (PDEs) co	ourse equips		
Summary		the mathematical tools and				
	to analyse and solve real-world phenomena governed by PDEs. The					
	syllabus focuses on analytical methods for solving first and second-order					
	PDEs, laying	PDEs, laying the foundation for further exploration of advanced PDEs and				
	their applicati	ons.				

Course Outcomes (CO):

-CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding of basic concepts and different type of first order partial differential equations.	U	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO2	Understanding of basic concepts, definitions, and mathematical problems related to first-order quasilinear equations.	An	E	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO3	Analyse and evaluate the classification of second-order linear equations, including the Cauchy problem and wave equations.	E	Р	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO4	Evaluate solutions for boundary value problems and apply them in solving PDEs.	Ар	E	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO5	To solve Vibrating string problems and Heat conduction problems	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

TEXTBOOK	Text: Amaranath – An elementary course in partial differential equations (2nd edition) – Narosa Publishing House, 2003									
MODULE	UNIT	CONTENT	Hrs	MARKS						
			(45+30)	Ext: 70						
		MODULE I		Min.15						
	1.1	Curves and Surfaces								
	1.2	Genesis of First Order P.D.E.								
Ι	1.3	Classification of Integrals	10							
	1.4	Linear Equations of the First Order								
	1.5	Pfaffian Differential Equations								
	1.6	Compatible Systems of first order PDE.								
	MODULE II	1		Min.10						
	1.7	Charpit's Method								
	1.8	Jacobi's Method	10							
Π	1.9	Integral Surfaces Through a Given Curve								
	1.10	Quasi-Linear Equations	_							
	1.11	Non-linear First Order P.D.E.	-							
		MODULE III		Min.15						
	2.1	Genesis of Second Order PDE								
ш	2.2	Classification of Second Order PDE	13							
	2.3.1	Vibrations of an Infinite String								
	2.3.2	Vibrations of a Semi - Infinite String								
	2.3.3	Vibrations of a String of Finite Length								
	2.3.5	Vibrations of a String of Finite Length (Method of Separation of Variables)								
	MODULE IV	T		Min.15						
	2.4.1	Boundary Value Problems								
IV	2.4.2	Maximum and Minimum Principles	12							
	2.4.3	The Cauchy Problem	1							

2.5.1	Heat Conduction - Infinite Rod Case	
2.5.2	Heat Conduction - Finite Rod Case	

	Practicum: The goal is for the		
V	students to learn the following topics in	30	
	15 practicum sessions of two hours		
	each via self-study and group		
	activities. The lecturer may assist by		
	running group discussions, supervising		
	class seminars and referring library		
	books for self-study and note		
	preparation		
	2.6: Duhamel's principle		
	2.8: families of equipotential surfaces		
	2.9: Kelvin's inversion theorem		
	References:	I	1
1. Ian S	Sneddon, Elements of Partial Differential Equations	s, Mc Graw	- Hill, 2013.
2. Phoe	olan Prasad, Renuka Raveendran: Partial Differenti	al Equation	s, Wiley
East	ern, 1985.		
3. M.I	D. Raisinghaniya, Ordinary and Partial Differential	Equations,	S Chand 18th
Edit	ion, 2008.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	<mark>PSO6</mark>	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	1	<mark>3</mark>	2			3	0	<mark>3</mark>	0	<mark>3</mark>	0	0
CO2	<mark>1</mark>	<mark>3</mark>	<mark>2</mark>	<mark>2</mark>			<mark>3</mark>	<mark>0</mark>	<mark>3</mark>	<mark>0</mark>	<mark>3</mark>	<mark>0</mark>	<mark>0</mark>
CO3	<mark>3</mark>	2	<mark>3</mark>	<mark>3</mark>			<mark>3</mark>	0	<mark>3</mark>	0	<mark>3</mark>	0	0
CO4													
CO5													

Correlation Levels:

Level Correlation

Nil
Slightly / Low
Moderate /
Medium
Substantial /
High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of Cos to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO1	~	\checkmark	~	~	✓
CO2	\checkmark	\checkmark	\checkmark	~	✓
CO3	\checkmark	√	\checkmark	~	√
CO4	\checkmark	√	\checkmark	~	√
CO5	✓	\checkmark	\checkmark	\checkmark	√

Programme	B.Sc. A	B.Sc. Applied Mathematics Honours							
Course Code	AMA7C	AMA7CJ405							
Course Title	ADVAN	CED ABSTRACT ALGEB	BRA						
Type of Course	Major								
Semester	VII	VII							
Academic Level	400-499	400-499							
Course Details	Credit	Credit Lecture/Tutorial Practical/ Practicum							
		per week	per week	Hours					
	4	3	2	75					
Pre-requisites	Basic kr	nowledge of binary operation	s, groups, subgroups, abe	elian					
	groups	groups							
Course	This cou	This course gives the idea about group homomorphism, isomorphism,							
Summary	factor gi	factor groups, Sylow theorems, Rings, Rings of polynomial, fields, field							
	extensio	ns e.t.c.							

Course Outcome (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		level*	category#	
CO1	Analyze and apply key concepts in group theory, including homomorphisms, factor groups, and isomorphism theorems, as well as Sylow theorems, to understand group structures and their classification.	An	С	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam
CO2	Develop a foundational understanding of rings, fields, and integral domains, with an emphasis on Fermat's and Euler's theorems, and apply this knowledge to the field of quotients of an integral domain, fostering problemsolving in abstract algebra.		С	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam
CO3	Investigate the structure of polynomial rings, understand their factorization over fields, and explore the concepts of homomorphisms and factor rings, along with the properties of prime and maximal ideals in ring theory.	An	Р	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam
CO4	Gain an understanding of extension fields and algebraic extensions, identifying their significance in abstract algebra and applications, including finite fields and the relationships among different types of field extensions.		Р	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam
CO5	Integrate knowledge of homomorphisms, ideals, factor rings, and extensions to solve complex	Ар	С	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam

problems in algebra, demonstrating an ability to reason abstractly and make connections between algebraic structures.							
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Detailed Syllabus:

TEXTBOOK MODULE	J UNIT	th Edition External		
	01.111	CONTENT	Hours (45+30)	Marks:70
	1	14 - Factor Groups		
	2	15 – Factor Group Computations and Simple Groups	10	Min 15
Ι	3	22 - Rings of Polynomials		
	4	23 - Factorization of Polynomials over a field		
Π	5	26 - Homomorphisms and Factor Rings	12	Min 15
	6	27 - Prime and Maximal ideals		
	7	29 - Introduction to Extension Fields		
ш	8	31 - Algebraic Extensions	13	Min 15
	9	33 - Finite Fields	10	
	10	34 - Isomorphism Theorems		
IV	11	36 - Sylow Theorems	10	Min 15
V	30			
	16 - Gr 21 - Th 35 - Se			
1 IN Her		References:		

1. I.N. Herstein: Topics in Algebra Wiley Eastern (Reprint)

2. N.H. Mc Coy and R.Thomas: Algebra. Allyn & Bacon Inc. (1977).

3. J. Rotman: The Theory of Groups Allyn & Bacon Inc. (1973)

4. Hall, Marshall: The Theory of Groups. Chelsea Pub. Co. NY. (1976)

5. Clark, Allan: Elements of Abstract Algebra Dover Publications (1984)

6. L.W. Shapiro: Introduction to Abstract Algebra McGraw Hill Book Co. NY (1975)

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	<mark>3</mark>	1	2	2			<mark>3</mark>	1	-		<mark>3</mark>	<mark>1</mark>	2
CO2	<mark>3</mark>	1	2	2			<mark>3</mark>	<mark>1</mark>	-		<mark>3</mark>	<mark>1</mark>	2
CO3	<mark>3</mark>	1	2	2			<mark>3</mark>	1	<mark>1</mark>		<mark>3</mark>	<mark>1</mark>	2
CO4	3	1	2	2			<mark>3</mark>	1	1		<mark>3</mark>	<mark>1</mark>	2
CO5													

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	<mark>Slightly / Low</mark>
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Seminar Report
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO1	\checkmark	~	✓	~	\checkmark
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	B Sc Ap	B Sc Applied Mathematics Honours						
Course Code	AMA80	AMA8CJ406						
Course Title	Introdu	ction to Fractals						
Type of Course	Major							
Semester	VIII							
Academic								
Level	400-499	400-499						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	5	••	75				
Pre-requisites	Theory of	of functions of real and contine	ous variables, differentia	l and integral				
	calculus	calculus, geometry, topology						
Course	This course is an introduction to fractal geometry, a visually motivated							
Summary	mathematical technique for studying roughness.							

Course Outcome

CO	CO Statement	Cognitive level*	Knowledge category#	Evaluation Tools used
CO1	Understand the basic concepts to build fractals	U	F	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam
CO2	Interpret the dimension of fractals	E	F	Internal Exam/Viva/ Assignment/Seminar /End Sem Exam
# - Fa	emember (R , Understand (U), Apply (Ap), An actual Knowledge (F), Conceptual Knowledge cognitive Knowledge (M)			

Textbook	Kenneth F	Kenneth Falconer, Fractal Geometry Mathematical Foundation and Application, Third							
	edition,								
	Wiley, 20	Viley, 2014							
Module	Unit	Content	Hrs	Marks					
			(75)	Ext : 70					
		Module I							
		1.1 Basic set theory							
Ι	1	1.2 Functions and limits	15						
		1.3 Measures and mass distributions							
		2.1 Box-counting dimensions							
		Module II							
II	2	2.2 Properties and problems of box-counting dimension	15						
	2	3.1 Hausdorff measure							

	3.2 Hausdorff dimension			
	3.3 Calculation of Hausdorff dimension – simple examples			
	Module III			
III	4.1 Basic methods	15		
111	3 9.1 Iterated function systems	15		
	9.2 Dimensions of self-similar sets			
	Module IV			
IV	9.3 Some variations	15		
1 V	4 10.2 Continued fractions	15		
	11.1 Dimensions of graphs			
	Module V (Open Ended)			
••	The Weierstrass function and self-affine graphs, Repeller's and iterated	15		
V	function system, The logistic map			

References

1. Falconer K.J, The Geometry of Fractal set, Cambridge University Press, Cambridge, 1986

2. Barnsley M F, (1988), Fractals Everywhere, Academic press

3. Pietgen, H.O., Jurgens, H. and Saupe, D., 2004, "Chaos and Fractals: New Frontiers of Science", 2nd Edition, Springer-Verlag, New York.

4. Barnsley, M, 2006, "Super Fractal", 2nd Edition, Cambridge University Press.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	3	2	2	1	2	1	2	2	2	1	1
CO 1											
	3	3	1	1	2	1	2	2	2	1	1
CO 2											

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	~	~	~
CO 2	✓	~	~	~	~

Mapping of COs to Assessment Rubrics:

Programme	B Sc Ap	B Sc Applied Mathematics Honours					
Course Code	AMA80	AMA8CJ407					
Course Title	Fluid D	ynamics					
Type of							
Course	Major	Major					
Semester	VIII						
Academic							
Level	400-499						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	5		75			
Pre-requisites	Basics o	Basics of real number system and calculus					

COURSE OUTCOME(CO)

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO 1	understand the concept of fluid and their classification, models and approaches to study the fluid flow.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO 2	Formulate mass and momentum conservation principle and obtain solution for non- viscous flow.	AP	Р	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO 3	Know potential theorems, minimum energy theorem and circulation theorem.	An	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO 4	Understand two-dimensional motion, circle theorem and Blasius theorem.	U	C	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam

* - Rer	member (R), Understand (U), Apply (Ap), A	nalyze (An), Eva	aluate (E), Create	(C) # - Factual		
Knowl	Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge					
(M)						

Detailed syllabus:

Module	Unit	Content	Hours75	Marks
Ι	1	Types of fluids, Continuum hypothesis, Lagrangian and Eulerian method of describing fluid motion	10	
	2	Motion of Fluid element: Translation, Rotation and		
		Deformation. Stream lines, Path lines and streak lines		
	3	Material derivative. Acceleration of a fluid particle in		
		Cartesian, Cylindrical Polar and Spherical Polar		
		Coordinates		
	4	Vorticity Vector, Vortex Lines, Rotational and		
		Irrotational motion of fluid, Rotational velocity, Velocity		
		Potential, Boundary surface, Boundary condition.		
II	5	Reynold transport theorem. Principle of	10	
		conservation of Mass-Equation of continuity (By		
	6	Lagrangian and Eulerian method). Equation of Continuity in different coordinate		
	6	systems. Body force and Surface force.		
	7	Euler's equation of motion-conservation of		
	,	momentum, Bernoulli's Equation, Energy		
		Equation, Impulsive effects.		
III	8	Irrotational motion in two dimensions: Stream	10	
		function, Physical significance of stream		
		function, Sinks, Doublets and their images in two		
		dimension,.		
	9	Complex Velocity Potential. Sources, Milne-		
		Thompson circle theorem, Vortex, Vortex		
		motion, Image of Vortex, Kelvin Circulation		
IV	10	Theorem, Complex potential due to Vortex,	10	
1 V	10	Irrotational motion produced by motion of	10	
		circular cylinders in an infinite mass of liquid,		
		Liquid Streaming past circular cylinder.		
	11	Kinetic energy of liquid, Motion of sphere through a		
		liquid at rest at infinity.		
	12	Liquid streaming past a fixed sphere, Axis-		
		Symmetric flow, Stoke's function.		
V		1. Kirchhoff vortex Theorem, Blasius	35	<u> </u>
		Theorem and Kutta-Joukowski Theorem		
		Frank Chorlton: Text Book of Fluid		
		Dynamics, C.B.S. Publishers, Delhi.		

<u>г т т</u>	
	2. Z.U.A. Warsi: Fluid Dynamics, Theoretical and Computational Approaches, C.R.C. Press
	 S.W. Yuan: Foundation of Fluid Mechanics, Prentice Hall of India Pvt. Ltd. New Delhi
	4. N. Curle and H J Davies: Modern fluid dynamics
	 G. K. Bachelor: An Introduction to Fluid Dynamics. Cambridge University Press. London.
	 R.W. Fox, P.J. Pritchard and A.T. McDonald: Introduction to Fluid Mechanics, Seventh Edition, John Wiley & Sons, 2009.
	 Mechanics, Seventh Edition, John Wiley & Sons, 2009.
	Web References: Digital platforms web links:
	NPTEL/SWAYAM/ MOOCS/Openstax.org
	https://openlearninglibrary.mit/edu/courses
	http://heecontent.upsdc.gov.in/SearchContent.aspx
	https://www.lkouniv.ac.in/en/article/e-content-faculty-
	of-science

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
GO 1	3	2	2	3	3	1	1	-	3	-	3
CO 1											
	3	3	2	3	3	1	1	-	3	-	3
CO 2											
	3	2	2	3	3	1	1	-	3	-	3
CO 3											
CO 4	3	2	2	3	3	1	1	-	3	1	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	\checkmark	>	\checkmark
CO 2	~	\checkmark	\checkmark	~	\checkmark
CO 3	√	\checkmark	\checkmark	\checkmark	✓

Programme	B Sc App	B Sc Applied Mathematics Honours				
Course Code	AMA8C	J408				
Course Title	Stochasti	cs Process				
Type of						
Course	Major					
Semester	VIII					
Academic						
Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	5		75		
Pre-requisites Basics of real number system and calculus						

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO 1	Carry out derivations involving conditional probability distributions and conditional expectations.	Ар	Р	Internal Exam/Assign ment/Sem inar/ Viva/Report/ End Sem Exam
CO 2	Define basic concepts from the theory of Markov chains and present proofs for the most important theorems.	An	С	Internal Exam/Assign ment/Sem inar/ Viva/Report/ End Sem Exam
CO 3	Solve differential equations for distributions and expectations in time continuous processes and determine corresponding limit distributions.	E	Р	Internal Exam/Assign ment/Sem inar/ Viva/Report/ End Sem Exam
	member (R), Understand (U), Apply (Ap), A ledge (F), Conceptual Knowledge (C), Proc			

Text		dhi, "Stochastic Processes", New Age International (P) Ltd n, 2001.	., New Delh	i, 2nd
Module	Unit	Content	Hours75	Marks
I	1	MARKOV AND STATIONARY PROCESSES 9 Specification of Stochastic Processes – Stationary Processes – Poisson Process – Generalizations – Birth and Death Processes – Markov Chain – Erlang Process	10	
Π	5	RENEWAL PROCESSES 9 Renewal processes in discrete and continuous time – Renewal equation – Stopping time – Wald's equation – Renewal theorems – Delayed and Equilibrium renewal processes – Residual and excess life times – Renewal reward process – Alternating renewal process – Regenerative stochastic process	10	
III	8	MARKOV RENEWAL AND SEMI – MARKOV PROCESSES 8 Definition and preliminary results – Markov renewal equation – Limiting behaviour - First passage time.	10	
IV	10	BRANCHING PROCESSES 10 Generating functions of branching processes – Probability of extinction – Distribution of total number of progeny – Generalization of classical Galton – Watson process – Continuous time Markov branching process – Age dependent branching process – Bellman - Harris process MARKOV PROCESSES WITH CONTINUOUS STATE SPACE 9 Brownian motion – Weiner process – Kolmogorov equations - First passage time distribution for Weiner process – Ornstein – Uhlenbeck process	10	
V		Applied problems of all modules		
Limited, 2 Methuen, I Edition, 19	nd Editic London, 1 96. 4. S.	U.N. Bhat, "Elements of Applied Stochastic Processes", Jc on, 1984. 2. D.R. Cox and H.D. Miller, "The theory of Stoc 1965. 3. S. M. Ross, "Stochastic Processes", Wiley, New Y Karlin and H.M. Taylor, "A First Course in Stochastic Pro- ew York, 1975	hastic Proce ork, 2nd	ss",

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	3	3	2	3	3	1	1	-	3	1	2
CO 1											
	3	2	2	3	3	1	1	-	3	1	2
CO 2											
	3	3	2	3	3	1	1	-	2	1	2
CO 3											

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Mapping of COs to Assessment Rubrics:

ELECTIVE COURSES

Programme	B. Sc. Appli	B. Sc. Applied Mathematics Honours					
Course Code	AMA5EJ301(1	AMA5EJ301(1)					
Course Title	MATHEMA	MATHEMATICAL FOUNDATIONS OF COMPUTING					
Type of Course	Elective (Sp	Elective (Specialisation- Mathematical Computing)					
Semester	V	V					
Academic Level	300 - 399	300 - 399					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Fundamental Mathematics Concepts: Set, Functions, Logic						
Course Summary		This course familiarises students with a selection of topics from discrete mathematics which find regular applications in Computer Science.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply mathematical induction to solve a variety of combinatorial problems.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO2	Analyse and classify different types of relations and equivalences in combinatorial settings.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO3	Evaluate and demonstrate proficiency in using combinatorial techniques such as permutations, factorials, and binomial coefficients to solve complex problems.	Е	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
# - Factua	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

		Detailed Syllabus:										
TextBook	(I)	Jiří Matoušek and Jaroslav Nešetřil, Invitation to Discrete Mathematic	s, (2/e) Oxfo	ord								
	Univer	University Press										
	(II)	(II) Robin J Wilson, Introduction to Graph Theory (4/e), Prentice Hall										
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)								
Ι		Combinatorial Counting (Text 1)	12									
	1											
	2	1.3 Mathematical Induction (Proof of Theorem 1.3.1 is optional)	-									
	3	1.5 Relations, 1.6 Equivalences and other special type of relation	-									
	4	3.1 Functions and subsets, 3.2 Permutations and factorials										
	5	3.3 Binomial Coefficients-										
	6	3.7 Inclusion-Exclusion Principle. (Third proof of Theorem 3.7.2 is optional)										
Π		12										
	7	4.1 The notion of a graph; Isomorphism										
	8	4.2 Subgraphs, Components, Adjacency Matrix										
	9	4.3 Graph Score (Proof of Theorem 4.3.3 is optional)										
	10	4.4 Eulerian Graphs (Second proof of Theorem 4.4.1 and lemma 4.4.2 are optional)										
	11	4.5 Eulerian Directed Graph	_									
	12	5.1 Definition and characterizations of trees	1									
III		12]									
	13	12. Planar Graphs (Proof of Theorem 12.2 and Theorem 12.3 are optional)										
	14	13. Euler's formula (up to Corollary 13.4)	1									
	15	13. Euler's formula(From Corollary 13.4)	1									
	16	17. Coloring Graphs	1									

	17	19. Coloring Maps (Proof of Theorem 19.2 and Theorem 19.4 are optional)					
	18	25 Hall's Marriage theorem					
		Probabilistic Method (Text 1)	12				
IV	19	10.1 Proofs by Counting (2-Coloting revisited and related topics are optional)					
	20	10.2 Finite Probability Spaces (up to Random graphs)					
	22	10.2 Finite Probability Spaces (From Random graphs)					
	22	10.3 Random Variables and their Expectations					
V	Open Ended						
	Hamiltonian Graphs, 2-Connectivity, Examples of applications of Probabilistic Method, Ramsey Theory, Generating Functions, Simulating random experiments in python and calculating expectations. Brook's Theorem.						

- 2. Discrete Mathematics and Applications by Kenneth Rosen (7th Edition, 2012), McGraw-Hill Education (ISBN-13: 978-0073383095)
- 3. Discrete Mathematics: Elementary and Beyond by László Lovász, József Pelikán, Katalin Vesztergombi, Springer 2003, ISBN-13: 978-0387955858.

Note: 1) Optional topics are exempted for end semester examination

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

11 0											
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	1	3	1	3	1	3	0	2
CO 2	2	2	1	1	3	1	3	2	3	0	2
CO 3	2	3	2	2	3	1	3	2	3	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examination							
CO 1	✓	~	✓	√	\checkmark							
CO 2	\checkmark	\checkmark	√	√	\checkmark							
CO 3	\checkmark	\checkmark	√	√	\checkmark							

Programme	B. Sc. Applied	B. Sc. Applied Mathematics Honours								
Course Code	AMA5EJ302(1)	AMA5EJ302(1)								
Course Title	DATA STRUCT	DATA STRUCTURES AND ALGORITHMS								
Type of Course	Elective (Speci	alisation- Mathematical C	Computing)							
Semester	V	V								
Academic Level	300 - 399	300 - 399								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours						
	4	4	-	60						
Pre-requisites	1. Fundamental	Mathematics Concepts: Se	ts, Functions							
	2. Discrete Math	ematics								
Course Summary		This course familiarises students with computational problems and computational thinking using some of the basic algorithmic strategies.								

Course Outcome

		Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and compare the efficiency of algorithms for computing Fibonacci numbers, distinguishing between exponential and polynomial approaches.	E	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Demonstrate proficiency in asymptotic analysis to assess the efficiency of algorithms.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply classical algorithms for number operations, including addition, multiplication, and modular arithmetic, to solve computational problems efficiently.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

Knowledge (M)

Detailed Syllabus:

Text Book		<i>Algorithms</i> by Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Va Education, 2006. ISBN: 978-0073523408.	zirani. Me	Graw- H
Module	Unit	Hrs (48+12)	Ext. Marks (70)	
Ι		Introduction	12	
	1	Computing Fibonacci Numbers: Exponential and Polynomial Algorihtms		
	2	Effficiency of Algorithms: Asymptotic Analysis, Big-O Notation		
	3	Algorithms with Numbers : Efficiency of classical Addition and Multiplication algorithms		
	4	Algorithms for Modular Arithmetic		
	5	Euclid's Algorithm for GCD		
	6	Primality Testing		
	Sectio			
II		12		
	7	Fast Integer Multiplication		
	8	Recursive Relations		
	9	Binary Search		
	10	Merge Sort		
	11	Graph Representations: Adjacency Matrix, Adjacency List		
	12	Depth First Search Undirected Graphs		
	13	Depth First Search in Directed Graphs		
	Sectio			
III		12		
	14	Checking connectivity		
	15	Directed Acyclic Graphs, Strongly Connected Components		
	16	Breadth First Search and Computation of distances.		

	17	Weighted Graphs and Dijkstra's Algorithm	1 1
	1 /		
	18	Priority queue implementations	
	19	Shortest Paths in Directed Acyclic Graphs	
	Sectio	ons from Text: 3.4, 4.1 to 4.4, 4.5, 4.7	
IV		Greedy & Dynamic Programming Algorithms	12
	20	Minimum Spanning Trees: Cut Property	
	21	Kruskal's Algorithm	
	22	Data structure for disjoint sets.	
	23	Prim's algorithm	
	24	Dynamic Programming and Shortest Path in Directed Acyclic Graphs (DAG)	
	25	All pairs of Shortest Paths and Floyd Warshall Algorithm	
	Sectio	ons from Text: 5.1, 5.4, 6.1, 6.6.	
V		Advanced Topics (Practical)	12
(Open Ended)	27	Implement the following algorithms in Python - Fibonacci Numbers (exponential and polynomial)	
		- Euclid's algorithm (extended version)	
		- Primality Testing	
		- Depth First Search (and checking connectivity)	
		- Breadth First Search (and calculating distances)	
		Dieudun i not Seuren (und eurennung uistunees)	

- 1. *The Design and Analysis of Algorithms* by Dexter C Kozen. Texts and Monographs in Computer Science, Springer, 1992. ISBN:0-387-97687-6.
- 2. *Introduction to Algorithms* (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein. PHI Learning, 2009. ISBN:978-81-203-4007-7.
- 3. *Algorithm Design* by Jon Kleinberg and Eva Tardos. Pearson, 2015. ISBN:978-93-325-1864.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2			3	1	3	3	3	0	3
CO 2	2	3	2	2			3	1	3	3	3	0	2
CO 3	2	3	3	2			3	1	3	3	3	0	2

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	✓	✓
CO 2	\checkmark	\checkmark	\checkmark	√	~
CO 3	\checkmark	~	✓	✓	✓

Programme	B. Sc. Applied	B. Sc. Applied Mathematics Honours					
Course Code	AMA6EJ301	AMA6EJ301(1)					
Course Title	NUMERICA	L ANALYSIS					
Type of Course	Elective (Spe	Elective (Specialisation- Mathematical Computing)					
Semester	VI						
Academic Level	300- 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	 Real analysis Linear algebra Basics of Python Programming 						
Course Summary	the course fac	miliarises students with the ilitates students to apply res titative analysis of numerica	ults from real ana	•			

Course Outcome

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand and apply the Bisection Method, Iteration Method, NewtonRaphson Method, and Secant Method to solve algebraic and transcendental equations numerically.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
CO2	Implement interpolation methods such as Newton's formulae, Lagrange's interpolation formula, and divided differences to approximate functions from discrete data.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
CO3	Implement numerical methods such as Euler's method, Modified Euler's Method, Runge-Kutta method, and Adams-Moulton Method to solve ordinary differential equations (ODEs).	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 							

Knowledge (M)

Detailed Syllabus:

Text Book		[1]. S. S. Sastry, Introductory Methods of Numerical Analysis				
		(5/e), PHI Learning (2012)				
		[2]. Dimitrios Mitsotakis: Computational Mathematics: An				
		Introduction to Numerical Analysis and Scientific				
		Computing with Python, CRC Press (2023), ISBN 978-1-				
		032-26240-6.				
		[3]. Jupyter Notebooks of [2] available at:				
		https://github.com/dmitsot/computational_mathematics				
Module	Unit	Content				
			Total			
			Hrs			
Ι		Numerical Solutions of Algebraic and Transcendelntal equations	12			
		(Text 1)				
	1	2.1 Introduction				
	2	2.2 Bisection Method				
	3	2.4 Iteration Method (Derivation of Condition for				
		Convergence and Acceleration of Convergence are optional)				
4		2.5 Newton- Raphson Method (Generalized Newton's Method				
		is optional)				
	5	2.7 Secant Method				
II		Interpolation(Text 1)	12			
	6	3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences				
	7	3.6 Newton's formulae for interpolation (up to and including				
		Example				
		3.5)				
	8	3.6 Newton's formulae for interpolation (From Example 3.6)				
·	9	3.9.1 Langrange's interpolation formula				
	10	3.10 Divided differences and their properties				
	11	3.10.1 Newton's General interpolation formula				
III		Numerical Differentiation and Integration(Text 1)	12			
	12	6.1 Introduction, 6.2 Numerical Differentiation (6.2.1, 6.2.2				
		and 6.2.3 are optional)				
	13	6.4.1 Trapezoidal Rule				
14		6.4.2 Simpson's 1/3-Rule				
	15	6.4.3 Simpson's 3/8 Rule				
	16	6.10 Numerical Double Integration				
IV		Numerical Solutions of Ordinary Differential	12			
		Equation(Text 1)				
	17	8.1 Introduction				
	18	8.2 Solution by Taylor's series,				
	19	8.4 Euler's method (8.4.1 is optional)				

	20	8.4.2 Modified Euler's Method	
	21	8.5 Runge-Kutta method	
	22	8.6.1 Adams-Moulton Method	
V		Numerical Algorithms and Lab Practicals	12

1	Jupyter Lab and Notebooks. Google Colab. Instructions in [6] and [7].
	Quick review of Python Programming. Ch 1 Notebook from [3].
2	Continue Quick Review of Python. Notebook [9]. Numpy and Scipy
	review from [7]. Ch 2 Notebook from [3].
3	Bisection Method. Algorithm and Program.
	Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2].
	Optional: Program to compute speed of convergence.
	Optional: False Position variant from [12].
4	Fixed Point Method (Iteration Method). Algorithm and Program.
	Notebook: Ch 5 of [3]. Reference: 5.2 of [2].
5	Newton-Raphson Method. Algorithm and Program. Notebook: Ch
	5 of [3]. Reference: 5.3 of [2].
6	Secant Method. Algorithm and Program.
	Notebook: Ch 5 of [3]. Reference: 5.4 of [2].
7	Fast computation using SciPy.Optimize.
	Notebook: Ch 5 of [3]. Reference: 5.6 of [2].
8.	Lagrange Interpolation.
	Notebook: Ch 6 of [3]. Reference: 6.1 of [2].
9	Newton's method for Interpolation using Divided Differences. Notebook:
	Ch 6 of [3]. Reference: 6.2 of [2].
10	Using SciPy.Interpolate Module. Lagrange Interpolation Only. Notebook: Ch 6 of [3]. Reference: 6.6 of [2].
11	Numerical Differentiation. Forward and Backward Differences. First Order
	and Second Order Derivative Approximations.
	Notebook: Ch 8 of [3]. Reference: 8.1 of [2].
12	Numerial Integration. Midpoint Rule. Composite Trapezoidal Rule.
	Composite Simpson's Rule.
	Notebook: Ch 7 of [3]. Reference: 7.1. of [2].
13	The Module scipy.integrate.
	Trapezoidal, Simpson.
	Reference: 7.4 of [2]. Notebook: Ch 7 of [3].
14	Euler's Method. Improved Euler's Method. Reference: 8.2 of [2].
	Notebook: Ch 8 of [3].

References:

- 1. F.B. Hidebrand : Introduction to Numerical Analysis, TMH.
- 2. J.B. Scarborough : Numerical Mathematical Analysis, Oxford and IBH
- 3. Joakim Sundnes, Introduction to Scientific Programming with Python. Springer (2020). ISBN

9783030-50355-0. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-030-50356-7</u> 4. Sven Linge and

Hans Petter Langtagen, Programming for Computations -- Python. A Gentle

Introduction to Numerical Simulations With Python. Springer (2018). ISBN 978-3-319-81282-3. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-319-32428-9</u>

Note: 1) Optional topics are exempted for end semester examination.

2) 70 external marks are distributed over the first four

modules subjected to a minimum of 15 marks from each module.

3) Module V is algorithms and lab computations. Algorithms for each numerical method can be taught along with the Python code in lab sessions. The second text [2] stresses computation from the beginning and is lab reference. The Jupyter Notebooks [3] intended for live lab lessons.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	3	3	0	2
CO 2	2	3	3	2	3	1	3	3	3	0	2
CO 3	3	3	3	2	3	1	3	3	3	0	2

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Π	Assignment/Semi
nar	
	Internal Exam
	Viva
Π	Final Exam (70%)

Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	\checkmark	✓	✓	\checkmark
CO 2	√	√	✓	√	✓
CO 3	√	\checkmark	\checkmark	\checkmark	✓

Programme	B. Sc. Applied	B. Sc. Applied Mathematics Honours					
Course Code	AMA6EJ302(1)	AMA6EJ302(1)					
Course Title	MATHEMAT	ICS FOR DIGITAL IMAG	JES				
Type of Course	Elective (Speci	alisation- Mathematical C	omputing)				
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit Lecture/Tutorial per Practical Total Hours week per week						
	4	4	-	60			
Pre-requisites	Basic Geometry	and Algebraic Structures					
Course Summary	Basic Geometry and Algebraic Structures The focus of this paper is mathematics underlying patterns which in converse can be used to produce patterns automatically by computer, allocating some design decisions to the user. We begin with isometries, those transformations of the plane which preserve distance and hence shape. These fall into two classes: the direct ones are rotations or translation, and the indirect ones reflections or glides. We derive the rules for combining isometries, and introduce groups, and the dihedral group in particular. We also apply this to classifying all 1-dimensional or 'braid' patterns into seven types. Our next focus is on symmetries; that is, those isometries which send a pattern onto itself, each part going to another with the same size and shape. A plane pattern is one having translation symmetries in two non-parallel directions. These are made up of parallelogram shaped cells, falling into five types. Finally, we deduce the existence of 17 pattern types, each with its own set of interacting symmetry operations.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the concept of isometries in geometry, including translation, rotation, and reflection, and understand their properties and how they preserve distances.	U	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Demonstrate the ability to compose isometries, understand their combined effects, and analyse the outcomes of sequential transformations.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO3	Investigate the classification of plane patterns, including different net types such as parallelogram nets, rectangular nets, centred rectangular nets, square nets, and hexagonal nets, and analyse examples of the 17 plane pattern types.	An	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
# - Factua	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Text	MATHEMATICS FOR DIGITAL IMAGES : Creation, Compression, Restoration,							
Book	Recog	nition. S G Hoggar- Cambridge University Press.						
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)				
Ι		Introduction	12					
	1	Isometries and their sense						
	2	The plane and vectors						
	3	Isometries – Translation, Rotation, Reflection						
	4	The sense of an isometry						
	5	The Classification of isometries						
	6	Composing isometries						
	Sectio	ns from Text (i): Chapter 1 – 1.1, 1.2, 1.3						
Π		How Isometries Combine	12					
	7	Reflections are the key						
	8	Some useful compositions						
	9	The Image of a line of symmetry						
	10	The dihedral group						
	11	Appendix on groups						
	Sectio	ns from Text (i):Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5						
III	ſ	The Seven Braid Patterns, Plane Patterns & Symmetries	12					
	12	Classification of braids						
	13	Constructing braid patterns						
	14	Translations and nets						
	15	Cells						

	r		
	16	The five net types	
	17	Nets allowing a reflection	
	Sectio	ons from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3	
IV		The 17 Plane Patterns	12
	18	Preliminaries	
	19	The general parallelogram net	
	20	The rectangular net	
	21	The centred rectangular net	
	22	The square net	
	23	The hexagonal net	
	24	Examples of the 17 plane pattern types	
	25	Scheme for identifying pattern types	
	Sectio	ons from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8	
V (Open		Advanced Topics (Practical)	12
Ended)	26	Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB	
	27	Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	

References:

- 1. Baldock R and Graham J (2000) Image Processing and analysis, a practical approach, Oxford University Press
- 2. Gonzalez R C and Woods R E (1993) Digital Image Processing, Addison-Wesley

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	2	2	3	0	2
CO 2	2	3	2	1	2	1	2	2	2	0	2
CO 3	3	3	2	1	3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics: Assignment/Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	√	~
CO 3	√	\checkmark	✓	✓	✓

Programme	B. Sc. Applied	B. Sc. Applied Mathematics Honours						
Course Code	MAT5EJ303 (2)							
Course Title	CONVEX OP	CONVEX OPTIMIZATION						
Type of Course	Elective (Spec	ialisation- Data Science)						
Semester	V							
Academic Level	300 - 399	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Linear Algebra	a and Multi Variable Calcul	us					
Course Summary	The course covers the basic theory of convex sets and functions, optimization theory of convex functions and Lagrangian duality. The concepts explored in this course are important for data science, as they underpin many algorithms and methods in machine learning, optimization, and statistical analysis. For instance, understanding gradients and Hessians is essential for optimizing cost functions, while knowledge of convex optimization is vital for developing efficient algorithms. This mathematical foundation will enable data scientists to design, analyse, and implement sophisticated models and solutions.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Prove the basic properties of convex sets and functions.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Model simple problems using convex optimization methods and solve them.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Formulate the dual of a convex optimization problem and describe the properties.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	aber (R), Understand (U), Apply (Ap), Anal al Knowledge(F) Conceptual Knowledge e (M)	• • •	. ,	. ,

Detailed Syllabus:

Text Book		1. K. G. Binmore, Mathematical Analysis: A straightforw 2nd edition, Cambridge University Press, 1982.	vard appr	oach,			
		2. Stephen Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.					
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)			
Ι		Review of Multivariable Calculus	10				
	1	Scalar and vector fields - Directional and Partial Derivatives					
	2	Differentiable functions and total Derivative - Matrix representation - Gradient and Jacobian					
	3	Chain rule for differentiation - matrix form					
	4	Stationary points - conditional for stationarity					
	5	Second derivatives and Hessian Matrix.		Min 15			
	6	Mean value theorems, second order Taylor's theorem					
	7	Eigenvalues of Hessian					
	8	Classification of stationary points.					
	Chap	ter 19 of Text Book 1 - pages 190-231.					
II		Convexity	14				
	9	Affine and Convex Sets					
	10	Convexity preserving operations					
	11	Generalized inequalities		Min 15			
	12	Supporting and separating hyperplanes					
	13	Dual cones and generalized inequality					
	14	Basic properties and examples of convex functions					
	15	Convexity preserving operations					

	16	Quasi convex, log convex functions		
	17	Convexity and generalized inequalities	-	
	Ch	apter 2 and 3 of Text Book 2.	-	
III		Convex Optimization Problems	12	
	18	Optimization problems and convex optimization	``	
	19	Linear optimization problems		
	20	Quadratic optimization problems	-	Min 1
	21	Geometric programming		
	22	Generalized inequality constraints		
	19	Vector optimization		
	Chap	ter 4 of Text Book 2		
IV		Duality	12	1
	20	The Lagrange dual function		
	21	The Lagrangian dual and geometric interpretation		
	22	Saddle point interpretation		Min 15
	23	Optimality condition		
	24	Theorems of alternatives		
	25	Generalized inequalities		
	Chap	ter 5 of Text Book 2		
V		Open Ended	12	
(Open Ended)	27	Instances of practical problems that can be solved with convex optimization methods discussed in the course such as linear classifiers, support vector machines, linear and logistic regression.		
Reference	es:			
2.	pringer	David G. Luenberger and Yinyu Ye. Linear and nonlinear programm ; 2015. Niels Lauritzen, Undergraduate Convexity: From Fourier And Motz World Scientific, 2013.	-	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	0	2	3	2	3	2	3	1	2
CO 2	2	3	1	2	3	2	3	3	3	1	3
CO 3	2	2	0	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
2-3	1N2il
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CC 1)	~	\checkmark	~	\checkmark
CC 2)	~	\checkmark	~	\checkmark
CC 3		~	\checkmark	~	\checkmark

Programme	B. Sc. Applied Mathematics Honours							
Course Code	MAT6EJ303 (2)							
Course Title	MACHINE LEARNING - I							
Type of Course	Elective (Specialisation- Data Science)							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre- requisites	Linear Algebra	L						
Course Summary	and generative regression and methods and m	The course develops the basic theory of linear discriminative and generative learning models and techniques for linear regression and classification. Understanding both classical methods and modern neural network approaches will prepare students to tackle a wide range of data science challenges.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Describe various regression and classification methods and apply them for simple problems.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
CO2	Apply methods of Bayesian inference to learning problems and analyse the solutions	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
CO3	Describe the functioning of feedforward neural network models of learning.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
# - Factual K	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

Text Book		Pattern Recognition and Machine Learning - Christopher M. -2006	Bishop - S	Springer	
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)	
I		Introduction to Statistical Learning	12	()	
	1	Review of probability theory, density and distribution functions			
	2	expectation and covariance, Bayesian probabilities.			
	3	Gaussian distribution: conditional and marginal distributions			
	4	Maximum Likelihood and Bayesian inference for Gaussian		Min 15	
	5	Decision Theory - inference and decision, loss functions			
	6	Entropy, relative entropy and mutual information			
	Chap	ter 1 and Section 3 of Chapter 2 from text book.			
II		12			
	7	Maximum likelihood and least squares			
	8	Regularized least squares			
	9	Bias-Variance Decomposition		Min 15	
	10	Bayesian Linear Regression			
	11	Parameter and Predictive Distributions			
	12	Bayesian model comparison			
	Chap				
III		Linear Classification	12		
	13	Discriminant functions			

	14	Least squares, Fischer discriminant and the relation between them.		
	15	_	Min 15	
	16	Maximum likelihood classifier	-	
	17	Probabilistic generative models and Logistic Regression		
	18	Bayesian logistic regression		
	Chap	oter 4 of text book		
IV		Neural Networks	12	
	19	Feed forward neural networks		
	20	Network training and gradient descent optimization	_	
	21	Analysis of error backpropagation	_	
	22	Hessian matrix and diagonal approximation	_	Min 15
	23	Regularization in neural networks.		
	Chap	oter 5 of text book		
V		Open Ended	12	
		Model Selection and Validation		-
		Non-Uniform Learnability		
		The Run Time of Learning		

David

- Cambridge University Press - ISBN 978-1-107-05713-5 - 2014

2) Foundations of Machine Learning - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar - The MIT Press - 2012

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping	of COs	with P	SOs and	POs:
---------	--------	--------	---------	------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	2	3	3	3	1	3
CO 2	3	3	2	2	3	2	3	3	3	1	3
CO 3	3	2	2	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	1	~	√	~	✓
CO 2	~	~	~	~	✓
CO 3	~	~	~	~	✓

Programme	B. Sc. Applied Mathematics Honours								
Course Code	MAT6EJ303	MAT6EJ303 (2)							
Course Title	APPLIED PROBABILITY								
Type of Course	Elective (Specialisation- Data Science)								
Semester	VI								
Academic Level	300 - 399								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	4	-	60					
Pre-requisites	Basic Algeb	ra and Calculus							
Course Summary	principles a probability essential for	This course serves as an introduction to the fundamental principles and concepts of probability theory. Understanding probability distributions, expectations, and Markov chains is essential for modelling data, making predictions, and analysing complex systems in data science applications.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand basic concepts in probability theory, including discrete and continuous probability distributions, joint distributions for multiple random variables, and Markov chains.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply probability distributions to practical scenarios and compute key measures such as expected value and variance, with an emphasis on their significance in decision-making and risk assessment.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Explore and understand fundamental limit theorems, such as the law of large numbers and the central limit theorem, and their implications for probability theory and statistical inference.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Anal Knowledge(F) Conceptual Knowledge (C) e (M)			

Detailed	Syllabus:
Detaneu	Synabus.

Text B	ook	Introduction to Probability Models - Sheldon M Ross -10 th (e)	- Academi	ic Press
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι			12	
	1	Sample space and events.		
	2	Probabilities defined on events.		
	3	Conditional Probabilities		
	4	Independent Events.		Min 15
	5	Bayes 'Formula.		
	6	Random Variables.		
	7	Discrete Random Variables.		
	8	Continuous Random Variables		
		er 1: Sections 1.2, 1.3, 1.4, 1.5, 1.6 er 2: Sections 2.1, 2.2, 2.3		
Π			12	
	9	Expectation of a Random Variable Discrete Case and Continuous Case		Min 15
	10	Jointly distributed Random Variables.		
	11	Moment generating functions.		
	12	Limit Theorems		
	Chapte	er 2: sections 2.4, 2.5, 2.6, 2.8		
III			12	

	13	Conditional probability and conditional expectation- The discrete case.		Min 15
	14	Conditional probability and conditional expectation- The continuous case.		
	15	Computing expectations by conditioning.		
	16	Computing Probabilities by conditioning.		
	Chapt	er3: Sections 3.1, 3.2, 3.3, 3.4, 3.5		
IV			12	
	19	Markov chain definition and examples.		

	20	Chapman-Kolmogrov equations.		
	21	Classification of states of a Markov Chain.		
	22	Limiting Probabilities		- Min 15
	Chapter	4: Sections 4.1, 4.2, 4.3, 4.4		- 14111 13
V		Open Ended	12	
	23	Properties of exponential distribution, Counting processes, Poisson process, properties of Poisson process		
Referenc	es:		ohn Wiley	·.
	. S. Ross	s, "A First Course in Probability," Eighth Edition, Prentice Hall.		
2.	. W. Fel	ler, "An Introduction to Probability Theory and its Applications," Vol.I, J		
3.	. B.V. G	nedenko, "Theory of Probability," Chelsea, New York	n, Academ	u
4.	. S.M. R	oss, "Stochastic Processes," second edition, John Wiley		
5	. S. Karl	yn and H. Taylor, "A First course in Stochastic Processes", second editio		c Press

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	2	3	2	3	1	2
CO 2	2	3	2	2	3	2	3	3	3	1	3
CO 3	3	2	1	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Tappi	ng oi COs	to Assessmen	n Kubi ks.		
	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	✓	~	\checkmark
CO 2	√	✓	✓	~	✓
CO 3	✓	✓	✓	1	\checkmark

Programme	B. Sc. Applied M	athematics Honours		
Course Code	MAT6EJ304 (2)			
Course Title	MACHINE LEA	RNING - II		
Type of Course	Elective (Special	isation- Data Science)		
Semester	VI			
Academic Level	300 - 399			
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours
	4	4	-	60
Pre-requisites	Machine Learning	g - I		
Course Summary	techniques like re enable students to develop robust p graphical models,	lies advanced models of m egression, classification, and b handle complex data sets, pe predictive models. Understand and PCA will provide the nece yen challenges in real-world ap	dimensionality rform advance ding kernel n essary tools for	y reduction will ed analytics, and nethods, SVMs,

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To analyse and design support vector machines and kernel methods for learning problem.	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	To analyse graphical models for learning and explore belief propagation in graph models.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	To analyse and apply PCA and dimensionality reduction techniques	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Analys Knowledge(F) Conceptual Knowledge (C) H			

Knowledge (M)

Detailed Syllabus:

Text B	ook	Pattern Recognition and Machine Learning - Christopher Springer - 2006	M. Bishop -	
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Kernel Methods	12	
	1	Review of linear regression and classification		
	2	Dual representations and construction of kernels		
	3	Radial basis function networks - Nadaraya-Watson model		
	4	Gaussian processes for regression and classification		
	5	Laplace approximation		
	6	Connection to neural networks		
	Chap	ter 6 of text book		
II		Support Vector Machines	12	
	7	Maximum Margin Classifiers		
	8	Relation to logistic regression		
	9	Regression using SVM.		
	10	Relevance Vector Machines		
	11	Regression and classification using RVM		
	Chap	ter 7 of text book		
III		Graphical Models	12	
	12	Bayesian Networks		
	13	Markov Random Fields		
	14	Factorization properties		
	15	Inference in Graphical Models		

	16	Factor graphs and sum-products algorithm		
	17	Belief propagation		
	Chap	ter 8 of text book		
IV		Principal Component Analysis	12	
	18	Maximum variance and minimum error PCA		
	19	Dimensionality reduction		
	20	Maximum likelihood PCA and EM algorithm		
	21	Bayesian PCA and factor analysis		
	22	Kernel PCA		
	Chap	ter 12 of text book		
V	Open Ended			
		1. Boosting		
		2. Convex learning problems		
		3. Regularization in convex learning		
		4. Learning of convex Lipschitz and smooth bounded functions		
		5. Stochastic gradient descent		

David

- Cambridge University Press - ISBN 978-1-107-05713-5 - 2014

2) Foundations of Machine Learning - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar - The MIT Press - 2012

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	2	3	2	3	3	3	1	3
CO 2	3	3	2	2	3	2	3	2	3	3	3	1	3
CO 3	3	3	2	2	3	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	✓
CO 2	~	✓	~	~	✓
CO 3	√	\checkmark	~	~	\checkmark

Programme	B. Sc. Applie	B. Sc. Applied Mathematics Honours					
Course Code	AMA5EJ305	AMA5EJ305(3)					
Course Title	Graph theor	Graph theory and Application					
Type of Course	Elective (Sp	Elective (Specialization- Applied Algebra)					
Semester	V	V					
Academic Level	300 - 399	300 - 399					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Definition o	Definition of graph, trees , spanning trees etc					
Course Summary	focus on str	In this we will overview various problems on graphs. While there will be a heavy focus on structure, efficient algorithms will also be integral to the course. Many problems can be modelled with graphs					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Graph theory focuses on problem solving using the most important notions of graph theory with in dept study of concepts on the applications in the field of computer Science	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Provides an in-depth understanding of graphs and fundamental principles and models underlying the theory, algorithms and proof techniques in the field of graph theory.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Student will have intimate knowledge about how the graph theory paly an important role to solve the technology driven researchoriented problems	Е	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book	John (Clark Derek Allen Holton - A first look at graph theor	y, Allied P	ublishers
Module	Unit	Content	Hours	Marks
				Ext:70
Ι	1	 4.1 - Matching and Augmenting paths 4.2 - The Marriage Problem 4.3 - The personnel Assignment problem 4.4 - The optimal Assignment problem 4.5 - A Chinese Postman Problem Postscript 		
II	2	 6.1 – Vertex Colouring 6.2 – Vertex Colouring Algorithms 6.3 – Critical Graphs 6.4 – Cliques 6.5 – Edge Colouring 6.6 – Map Colouring 		
Ш	3	 7.1 – Definitions 7.2 – Indegree and Outdegree 7.3 – Tournaments 7.4 – Traffic Flow 		
IV	4	 8.1 – Flows and Cuts 8.2 - The Ford and Fulkerson Algorithm 8.3 - Separating Sets 		
V-Open Ended		 5.3 – The Platonic Bodies 5.4 – Kuratowski's Theorem 5.5 – Non – Hamiltonian Plane Graphs 5.6 – The Dual of A Plane Graph 		

Reference:

- 1. Douglas B West Peter Grossman Introduction to Graph Theory
- 2. W.D.Wallis A Biginner's Guide to Discrete Mathematics, Springer
- 3. . R. Balakrishnan, K. Ranganathan A textbook of Graph Theory, Springer International Edition
- 4. S.Arumugham, S. Ramachandran Invitation to Graph Theory, Scitech. Peter Grossman,
- 5. J.K Sharma : Discrete Mathematics(2nd edition), (Macmillion)
- 6. S. A. Choudam A First Course in Graph Theory (Macmillian)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	2	2	3	0	2
CO 2	2	3	2	2	2	1	2	2	2	0	2
CO 3	3	3	2	2	3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High
۵	Assignment/Semi na
	Internal Exam
Π	Viva

Assessment Rubrics:

□ Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Programme	BSc Applied Mathematics Honours					
Course Code	AMA5EJ306(3)					
Course Title	Lattice Theory					
Type of Course	Elective (Speciali	zation - Applied Alge	bra)			
Semester	V	V				
Academic Level	300 - 399					
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours		
	4	4	-	60		
Pre-requisites	Knowledge of numbers and sets.					
Course Summary	This course covers the knowledge of counting principles which is essential for study and apply it in real world and also the knowledge of Lattices and its applications.					

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO1	Knowledge about the relations and axioms related to natural numbers.	U	С	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO2	Understand the concepts of Lattices	U	F	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO3	Classify the various types of functions and make them to use in practical applications related to computer science	An	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam
CO4	Gain Knowledge about the algebraic system	An	Р	Internal Exam/ Assignment/S eminar/ Viva/Report/ End Sem Exam

(M)

Τ

)

Text	J.P. Tremblay, R. Manohar, Discrete Mathematical structure with
Book	Applications to computer science, Tata Mc Graw hill, 2001.

Module	Unit	Content	60 Hours	Marks
Ι	1	2.3: Relations and Ordering2.3.1: Relations	10	
	2	2.3.2: Properties of Binary relations in a set		
	3	2.3.3: Relation Matrix and Graph of a Relation.		
	4	2.3.8: Partial Ordering		
	5	2.3.9: Partially ordered set: Representation and Associated terminology		
II	6	2.4: Functions2.4.1: Definition and Introduction	10	
	7	2.4.2: Composition of functions		
	8	2.4.3: Inverse functions		
	9	2.4.5: Characteristic Function of a Set		
	10	2.5: Natural Numbers2.5.1: Peano axioms and Mathematical induction		
III	11	Algebraic Systems: Examples and General Properties 3.1.1 Definition and examples		
	12	3.2Semigroups and Monoids3.2.1 Definition and Examples		
	13	3.2.3 Subsemigroups and Submonoids		
IV	14	4.1 Lattices as Partially Ordered Sets4.1.1 Definition and examples		
	15	4.1.2 Some properties of Lattices		
	16	4.1.4 Sub lattices		
	17	4.2 Boolean algebra4.2.1 Definition and examples		
	18	4.2.2 Sub Algebra, Direct product and Homomorphism.		
V		2.3.4: Partition and Covering of a set.2.3.5: Equivalence Relations2.3.6: Compatibility Relations		

	2.3.7: Composition of Binary Relation3.2.2 Homomorphism of Semigroups and Monoids3.7 Group Codes					
REFERENCE BOOKS:						

- 1. Dr.M.K. Sen and Dr. B.C. Charraborthy, Introduction to Discrete Mathematics, Arunabha Sen Books & allied Pvt.Ltd, 8/1, Chintamoni Das Lane, Kolkatta 700 009.
- 2. Lattice theory by Garrett Birkhoff
- 3. Discrete Mathematics- M.K. Venkataraman, National Publishing Co, Chennai

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	2	2	2	3	2	1	-	3	-	1
CO 3	3	3	2	1	3	1	2	-	2	-	1
CO 4	3	3	2	1	3	1	2	-	2	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Report
- Final Exam (70%)

Mapping	of	COs to	Assessment	Rubrics :

	Internal Exam	Assignment	Seminar	Report	
					End Semester Examinations
CO 1	\checkmark	V	√	√	\checkmark
	_				
CO 2	√	√			✓
CO 3	\checkmark				√
CO 4	\checkmark				\checkmark

Programme	B. Sc. Applie	B. Sc. Applied Mathematics Honours						
Course Code	AMA5EJ305	(3)						
Course Title	Fuzzy Sets	Fuzzy Sets						
Type of Course	Elective (Specialization- Applied Algebra)							
Semester	V	V						
Academic Level	300 - 399	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Fundamenta	Fundamental Mathematics Concepts: Set, Functions						
Course Summary	This course explains the fundamental concepts of Fuzzy Mathematics the representations of Fuzzy Sets and the types of Operations							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the basics of fuzzy mathematics	U	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	To apply fuzzy set theory in modelling and analysing uncertainty in decision problem.	Ар	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Analyse (Knowledge(F) Conceptual Knowledge (C) Pro-			ognitive Knowledge

Text BookGEORGE J. KLIR AND BO YUAN, FUZZY SETS AND FUZZY THEORY AND APPLICATIONS, Prentice Hall, 1995.					
Module	Unit	Content	Hours	Marks	
				Ext:70	
Ţ	1	1.3 Fuzzy Sets: Basic Types2.1 Additional Properties of alpha-Cuts	12		
I	2	1.4 Fuzzy Sets: Basic Concepts			
	3	1.5 Characteristics and Significance of the Paradigm Shift			
	4	2.1 Additional Properties of alpha-Cuts			
II 5 2.2. Representations of Fuzzy Set		2.2. Representations of Fuzzy Sets	14		
	6	2.3 Extension Principle for Fuzzy Sets			
	7	3.1 Types of Operations			
	8	3.2 Fuzzy Complements			
	9	3.3 Fuzzy Intersections: t-Norms			
	10	3.4 Fuzzy Unions: t-Conorms			
III	11	3.5 Combinations of Operations			
	12	3.6 Aggregation Operations			
13		4.1 Fuzzy Numbers	10		
IV	14	4.2 Linguistic Variables	12		
		4.3 Arithmetic Operations on Intervals			
		4.4 Arithmetic Operations on Fuzzy Numbers			
V-Open Ended		Problems of all the four modules using any of the software	12		

 Reference Books: 1. George J Klir and Tina A Folger, Fuzzy sets, Uncertainty and Information, Prentice Hall of India, 1988. 2. H. J. Zimmerman, Fuzzy Set theory and its applications, 4th Edition, Kluwer Academic Publishers, 2001. 3. Timothy J Ross, Fuzzy Logic with Engineering Applications, McGraw Hill International Editions, 1997 		
---	--	--

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	1	2	1	3	0	2
CO 2	2	3	2	2	3	1	2	2	2	0	2

Correlation Levels:

ſ		on Levels:	
	Level	Correlation	Assessr Assignment/Seminar
	-	Nil	Internal Exam Viva
	1	Slightly / Low	Final Exam (70%)
	2	Moderate / Medium	
	3	Substantial / High	

Assessment Rubrics:

	Rubrics:							
	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations			
CO 1	\checkmark	✓	~	~	\checkmark			
CO 2	✓	✓	\checkmark	~	\checkmark			

Program	B. Sc. Applied Mat	B. Sc. Applied Mathematics Honours				
Course Code	AMA6EJ306(3)					
Course Title	CODING THEC	DRY				
Type of Course	Elective(Specializ	zation – Applied Al	lgebra)			
Semester	V					
Academic Level	300-399					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	4	-	4		
Pre-requisites	Basic Linear Alge	ebra				
Course Summary	Linear codes involve encoding data into a sequence of bits using mathematical operations to correct errors during transmission. Cyclic codes are special type of linear codes facilitating efficient encoding and decoding.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
C01	Understand and apply various source coding techniques to improve transmission efficiency and examine different error detection mechanism.	Ар	P	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Construct the encoder and decoder of linear block codes.	С	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Analyze the generation and implementation of cyclic codes	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabu	is: Semester	Course Name: CODING THEORY
TEXTBOOK	San Ling and Chaoping Xing, Co University Press, 2004.	oding Theory, A First Course, Cambridge

MODULE UNIT CONTENT		CONTENT	Hrs	MARKS		
				Ext:70		
	In	troduction to Coding theory				
	1	- Error Detection and Correction				
I	2	- Maximum likelihood decoding and Nearest neighbor decoding	13			
	3	- Basics of Finite Fields and Vector				
		space				
		Linear Codes				
п	4	4.2, 4.3 - Linear Codes and Hamming Weight	20			
	5	4.5 - Generator matrix and paritycheck matrix	20			
	6	6 4.6 - Equivalence of linear codes				
	7	4.8 - Decoding of linear codes				
	Cyclic Codes					
	8	7.2 - Generator polynomials	14			
III	9	7.4 - Decoding of cyclic codes				
	10	7.5 - Burst-error correcting codes				
		Some Special Codes				
IV	11	5.3.2 - q-ary Hamming codes	13			
1	12	5.3.3 - Golay codes				
	13	Reed Solomon codes				
	14	6.2 - Reed Muller codes				
	Ν	MODULE V (Open Ended)				

	V Source coding- Classification of codes, Kraft inequality, coding efficiency, Shannon-Fano coding Huffman coding, Shannon-Fanco- Elias coding, Arithmetic coding, the Lempel-Ziv coding, Runlength encoding Convolution and turbo codes	12			
Refere					
1.	R. Lidl and H. Neiderreiter, Introduction to Finite Fields and th	neir Ap	plications,		
2	Cambridge University Press, 1983. F.J.MacWilliams and N.J.A.Sloane, The Theory of Error Corre	otina (Today North		
2.	Holland, Amsterdam, 1998.	cing	Joues, North		
3.	Shu Lin and Daniel J.Costello, Error Control Coding -Fundam	entals	and		
	Applications, Pearson Education India, 2011.				
4.	SimonHaykin, Communication System, 4th edition, Wiley Publ	ication	s, 2001		
5.	. Thomas M.Cover, Joy A Thomas, Elements of Information Theory, 2nt edition, Wiley,2015				
6.	Bose, Ranjan. Information theory, coding and Cryptography, 2	2 nd Edi	tion, Tata		
	McGraw- Hill Education, 2008				
7.	7. R P Singh, S.D.Sapre, Communication system, 2 nd Edition, Tata McGraw-Hill				
Education 2008					
8. K. Deergha Rao, Channel coding Technique for Wireless Communications 2 nd					
	edition, Springer, 2019				
9.	Biswas, Nripendra N. Logic design theory, Prentice Hall, Inc,1	993			

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	2	3	3	3	0	2
CO 2	2	3	2	2	3	2	3	2	2	0	2
CO3	2	3	2	2	2	2	2	2	2	0	3

Correlation Levels:

Assessment	Rubrics:
------------	-----------------

Leve	el Correlat	ion					
-	Nil		Assignment/Seminar Internal Exa Viva				
1	Slightly /	Low		Fi	nal Exam (70%)		
2	Moderate	/ Medium					
3		Substantial / High		Mapping of COs to Assessment Rubrics:			
	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations		
CO 1	√	~	~	√	✓		
CO 2	√	✓	✓	√	✓		
CO3	√	√		~	\checkmark		

Program	B. Sc. Applied Mat	B. Sc. Applied Mathematics Honours			
Course Code	AMA6EJ302(1)				
Course Title	CODING THEO	DRY			
Type of Course	Elective(Specializ	zation – Applied Al	lgebra)		
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours	
	4	4	-	4	
Pre-requisites	Basic Linear Alge	ebra			
Course Summary	Linear codes involve encoding data into a sequence of bits using mathematical operations to correct errors during transmission. Cyclic codes are special type of linear codes facilitating efficient encoding and decoding.				

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category	Tools used

CO1	Understand and apply various source coding techniques to improve transmission efficiency and examine different error detection mechanism.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam	
CO2	Construct the encoder and decoder of linear block codes.	С	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam	
CO3	Analyze the generation and implementation of cyclic codes	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam	
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 					

Knowledge (M)

Detailed Syllabus: Semester

Course Name: CODING THEORY

TEXTBOOK	San Ling and Chaoping Xing, Coding Theory, A First Course, Cambridge					
	University Pr	ess, 2004.				
MODULE			Hrs	MARKS		
	UNIT	CONTENT		Ext:70		
	Int	roduction to Coding theory				
	1	- Error Detection and Correction				
	2	- Maximum likelihood decoding and				
Ι		Nearest neighbor decoding	13			
	3	- Basics of Finite Fields and Vector				
		space				
		Linear Codes				
	4	4.2, 4.3 - Linear Codes and				
		Hamming Weight	20			
II	5	4.5 - Generator matrix and				
		paritycheck matrix				
	6	4.6 - Equivalence of linear codes				
	7	4.8 - Decoding of linear codes				
		Cyclic Codes				
	8	7.2 - Generator polynomials	14			
	9	7.4 - Decoding of cyclic codes				
III	10	7.5 - Burst-error correcting codes				
		Some Special Codes				
	11	5.3.2 - q-ary Hamming codes				
IV	12	5.3.3 - Golay codes	13			

	13	Reed Solomon codes		
	14	6.2 - Reed Muller codes		
	Ν	IODULE V (Open Ended)		
V	Source codin	12		
	inequality, co	ding efficiency, Shannon-Fano coding		
	Huffman cod	ing, Shannon-Fanco- Elias coding,		
	Arithmetic co			
	Runlength en	coding		
	Convolution	and turbo codes		

References:

- 1. R. Lidl and H. Neiderreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, 1983.
- **2.** F.J.MacWilliams and N.J.A.Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1998.
- **3.** Shu Lin and Daniel J.Costello, Error Control Coding -Fundamentals and Applications, Pearson Education India, 2011.
- 4. SimonHaykin, Communication System, 4th edition, Wiley Publications, 2001
- **5.** Thomas M.Cover, Joy A Thomas, Elements of Information Theory, 2nt edition, Wiley,2015
- **6.** Bose, Ranjan. Information theory, coding and Cryptography, 2nd Edition, Tata McGraw- Hill Education, 2008
- R P Singh, S.D.Sapre, Communication system, 2nd Edition, Tata McGraw-Hill Education 2008
- K. Deergha Rao, Channel coding Technique for Wireless Communications 2nd edition, Springer, 2019
- 9. Biswas, Nripendra N. Logic design theory, Prentice Hall, Inc, 1993

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	2	3	3	3	0	2
CO 2	2	3	2	2	3	2	3	2	2	0	2

2	3 evels:	2	2	2	2	2	2	2	0	3
Correlation Levels.						Assess	sment l	Rubric	s:	
Co	orrelatio	n								
- Nil		Nil								
Sl	ightly / L	ow								
М	oderate /	Medium								
					nar		۵	I	Assignme	ent/Semi
					1101		_		Π	al Exam Viva
	ion L Co Ni S1	ion Levels: Correlation Nil Slightly / L Moderate / Substant	ion Levels: Correlation	ion Levels: Correlation Nil Slightly / Low Moderate / Medium Substantial /	ion Levels: Correlation Nil Slightly / Low Moderate / Medium Substantial / High	ion Levels: Correlation Nil Slightly / Low Moderate / Medium Substantial /	ion Levels: Correlation Nil Slightly / Low Moderate / Medium Substantial / High	ion Levels: Correlation Nil Slightly / Low Moderate / Medium Substantial / High	ion Levels: Correlation Assessment Rubric Nil Slightly / Low Moderate / Medium Substantial / High Substantial / High Imar Imar Imar	ion Levels: Correlation Assessment Rubrics: Nil Slightly / Low Moderate / Medium Substantial / High Substantial / High Assignment nar Intern Intern Intern Intern Intern Intern

PP					
	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	✓	\checkmark	✓	\checkmark
CO 2	\checkmark	\checkmark	√	✓	\checkmark
CO3	√	✓		✓	\checkmark

Program	B. Sc. Applie	B. Sc. Applied Mathematics Honours					
Course Code	AMA5EJ307	7(4)					
Course Title	Financial M	athematics					
Type of Course	Elective (Sp	ecialisation- OPTIMIZA	ΓΙΟΝ)				
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basics of integration and differentiation ,Probability						
Course Summary		provides the basics of Black of integration in various fina					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To acquire knowledge of the role of risk neutral probability measures the use of some elements of stochastic calculus in mathematical finance.	Ар	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO2	To study the concepts of The Arbitrage theorem to form a pricing model for the stocks.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	nber (R), Understand (U), Apply (Ap), Anal l Knowledge(F) Conceptual Knowledge (C ge (M)	• • •	. ,	· /

Text Book	1.	 Frank Verner and Yuri N Sotskov, Mathematics of Economics and Business, Routledge Publications, 2006. 							
	2.	2. Timothy J Biehler, The Mathematics of Money, The McGraw Hill Company, 2008.							
	3.	SHELDON M. ROSS. An elementary introduction finance, Cambridge University Press 2011	to mather	natical					
Module	Unit	Content	Hours	Marks					
				Ext:70					
-	1	2.3 Finance (2.3.1-2.3.5 of Text 1)							
Ι	2	5.6 Some Applications of Integration (5.6.1-5.6.3 of Text 1)							
II	3	12.4 Linear difference equations (12.4.1-12.4.3 of Text 1) 10 Consumer Mathematics (10.1 -10.4 of Text 2)							
	4	6 The Arbitrage Theorem (6.1-6.3 of Text3)							
III	5	7 The Black–Scholes Formula (7.1-7.3 of Text 3)							
IV	6	10 Stochastic Order Relations (10.1-10.5 of Text 3)							
V-Open Ended Problems of all the four modules using any of the software									
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)									

Mapping of COs with PSOs and POs :

	Real	DECO	DGGG	Daod	DOI	DOG	DOA	DO 4	DO	DO	D05
	PSO1	PSO2	PSO3	PSO4	POI	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	2	3	3	3	0	2
CO 2	2	3	2	2	3	2	3	2	2	0	2
CO3	2	3	2	2	2	2	2	2	2	0	3

Correlation Levels: Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

nar

Image: Assignment/Semi

	Intern	al Exam
	Ο	Viva
	Final Exa	m (70%)

Internal Exam	Assignment	Seminar	Viva	End Semester Examinations

CO 1	\checkmark	✓	\checkmark	~	\checkmark
CO 2	~	~	\checkmark	\checkmark	\checkmark
CO3	\checkmark	\checkmark		~	\checkmark

Program	B. Sc. Appli	B. Sc. Applied Mathematics Honours					
Course Code	AMA5EJ30	AMA5EJ308(4)					
Course Title	Mathema	tical Modelling					
Type of Course	Elective (O	Elective (OPTIMIZATION)					
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basic statist	ics and calculus					
Course Summary	real- life ca mathematica	bjective of this course is to use studies through differen al modeling. choosing the m ave been fitted	ntial equations,	their applications and			

COURSE OUTCOME:

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Learn basic of differential equations and compartmental models.	U	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Formulate differential equations for various mathematical models	С	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Construct normal equation of best fit and predict future values	Е	р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	nber (R), Understand (U), Apply (Ap), Anal I Knowledge(F) Conceptual Knowledge (C) ge (M)			

Text Book		Mathematical modelling using studies using MAPLE s and G R Fulford (3 rd edition)	and MAT	LAB – B				
		Text 2- A First Course in Mathematical Modelling (5 th edition)- Frank R. Giordano, William P Fox, Steven B. Horton						
Module	Unit							
				Ext:70				

Ι	1	Text 1: Introduction to mathematical modelling 1.1 Mathematical models 1.3 some modelling approaches 1.4 Modeling for decision- making		
	2	2-Compartmental models2.1 Introduction2.2 Exponential Decay and Radioactivity	15	20
	3	2.5 Lake Pollution models2.6 Case Study: Lake Burley Griffin		
	4	2.7 Drug Assimilation into the blood 2.8 Case study: Dull dizzy or dead?		
п	5	3.1Exponential growth1.2 Density – Dependent growth	8	15
	6	3.3 Limited growth with harvesting3.7 discrete population growth and chaos		
III	7	5.1 Introduction5.2 Model for an influenza outbreak	10	15
	8	5.4 Predators and prey	10	15
	9	5.7 Competing species5.9 Model of a battle		
IV		Text 2: Chapter 3 Model Fitting 3.1 Fitting Models to Data Graphically		
		3.2 Analytic methods of Model Fitting	15	20
		3.3 Applying the Least Squares Criterion		
		4.1 Harvesting the Chesapeake Bay and Other One – Term models		

	5.2 Generating Random Numbers		
V-Open Ended	 Text 1: 5.3 Case Study: Cholera 5.6 Case Study: It's a dog's life: More on the control of stray dogs 5.8 Scenario: Aggressive protection of lerps and nymphs 5.10 Case Study: Rise and fall of civilisations Text 2: 3.4 Choosing a Best Model 	12	
ed.). CRC Pres	, & Fox, William P. (2020). Mathematical Modeling wit s, Taylor & Francis Group. nry, Penney, David E., & Calvis, David T. (2015). Differ		2nd

Equations and Boundary Value Problems: Computing and Modeling (5th ed.). Pearson.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	2	3	3	3	3	2	2	2	2	1	2
CO 1											
	2	3	3	3	3	2	2	2	2	1	2
CO 2											
	2	3	3	3	2	2	1	1	2	1	2
CO 3											

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	V	✓	V	~	\checkmark
CO 2	~	✓	√	✓	√
CO 3	V	✓	✓	V	√

Programme	B. Sc. Appli	B. Sc. Applied Mathematics Honours					
Course Code	AMA6EJ307	7(4)					
Course Title	Mathemat	Mathematical Economics					
Type of Course	Elective (O	Elective (OPTIMIZATION)					
Semester	VI	VI					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Integration a	and basic mathematics	· ·				
Course Summary		includes properties of mark l Income Models and applic					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To analyse the properties equilibrium in Economics.	An	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	To understand some Economic Applications of Integrals	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	nber (R), Understand (U), Apply (Ap), Ana l Knowledge(F) Conceptual Knowledge (C e (M)			

Text	-	C Chiang, Kevin Wainwright, Fundamental Me	thods of M	athematica
Book	Econo	mics, 4 th Edition, 2005		
Module	Unit	Content	Hours	Marks
				Ext:70
Ι	1	Equilibrium Analysis in Economics 3.1 The Meaning of Equilibrium	10	
	2	3.2 Partial Market Equilibrium- A linear Model		
II	3	3.3 Partial Market Equilibrium- A non-linear Model	13	
	4	3.4 General Market Equilibrium	15	
	5	3.5 Equilibrium in National Income Analysis		
	6	Matrix Analysis 5.6 Applications to Market and National Income Models		
	7	5.7 Leontif Input-Output Model		
III	8	 Further topics in Optimization 13.1 Non-linear Programming and KuhnTucker Conditions 		

9		1	1
9	13.2 The Constraint Qualification		
10	13.3 Economic Applications		
	13.4 Sufficiency Theorems in Non-linear Programming		
11	Applications of Integration 14.5 Some Economic Applications of Integrals	10	
	14.6 Domar Growth Model		
nded	Problems of all the four modules using any of the software	12	
1g, C.,		cal Ecor	10mics,
1	11 nded ng, C.,	13.4 Sufficiency Theorems in Non-linear Programming 11 Applications of Integration 14.5 Some Economic Applications of Integrals 14.6 Domar Growth Model nded Problems of all the four modules using any of the software	13.4 Sufficiency Theorems in Non-linear Programming 11 Applications of Integration 14.5 Some Economic Applications of Integrals 14.6 Domar Growth Model 14.6 Domar Growth Model 12 nded Problems of all the four modules using any of the software 12 ng, C., Fundamental Methods of Mathematical Econ

- 1. Baumol W. J., Economic Dynamics, Macmillan, (Latest edition).
- 2. Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences.
- 3. Dowling E. T., Mathematics for economists, Schum Series (latest edition).
- 4. Weber E. Jean, Mathematical Analysis, Business and Economic Applications (Latest Edition) Harper and Row Publishers, New

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	2	1	1	2	2	2	2	0	1	0	2
CO 1											
	2	1	1	2	2	2	2	0	1	0	2
CO 2											

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	~	\checkmark	~
CO 2	\checkmark	\checkmark	\checkmark	~	✓
CO 3	✓	\checkmark	~	✓	~

Programme	B. Sc. Appli	B. Sc. Applied Mathematics Honours						
Course Code	AMA6EJ30	AMA6EJ308(4)						
Course Title	Operations	Operations Research						
Type of Course	Elective (O	PTIMIZATION)						
Semester	VI	VI						
Academic Level	300-399	300-399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Graphs and	basic linear algebra						
Course Summary	explains the	This course gives an idea of application graph theory in optimization. It also explains the methods to solve integer programming problem, Kuhn-tucker Theory and Nonlinear Programming, game theory.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply various methods to solve integer programing problem	Ap		Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO2	Use Kuhn-tucker Theory and Nonlinear Programming	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam						
CO3	Gives knowledge about strategies in game theory	E	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam						
# - Factual	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Text Book	Optim	Optimization Methods By Mittal									
Module	Unit	Content	Hours	Marks							
			60	Ext:70							
I		5 – Flow And Potential In Networks 5.1 – Introduction	12								
		5.2 – Graphs: Definitions And Notations									
		5.3 – Minimum Path Problem									
		5.4 – Spanning Tree Of Minimum Length									
		5.5 – Problem Of Minimum Potential Difference									
		5.6 – Scheduling Of Sequential Activities	1								
		5.7 – Maximum Flow Problem									

	6 Integer Programming	12	
	6.1 - Introduction		
	6.2 - ILP in two- dimensional space		
	6.3 - General ILP And MILP Problems		

II		6.4 - Examples of section 2	
		6.5 - Cutting Planes	
		6.6 - Examples	
		6.8 - Branch and Bounded Method - examples	
Ш		8 Kuhn-tucker Theory and Nonlinear Programming 8.1 - Introduction	12
		8.2 - Lagrangian function: saddle Point	
		8.3 - Relation between saddle point of $F(X, Y)$ and minimal point of $f(X)$	
		8.4 - Kuhn-Tucker conditions	
		8.5 - Primal and dual problems	
		8.6 - Quadratic Programming	
		8.7 - Separable programming	
IV		12 – Theory Of Games 12.1 – Introduction	12
		12.2 – Matrix (Or Rectangular) Games	
		12.3 - Problem Of Game Theory	
		12.4 – Minimax Theorem, Saddle Point	
		12.5 – Strategies And Pay Off	
		12.6 – Theorems Of Matrix Games	
V-Open I	Ended	 5.8 – Duality In the Maximum Flow Problem 5.9 – Generalized Problem of Maximum Flow 6.7 - Remarks On Cutting Plane Methods 	12

6.9 - Branch And Bounded Method; General Description	
12.7 – Graphical Solution	
12.8 – Notion Of Dominance	
12.9 – Rectangular Games as An LP Problem Queuing theory	

References

- Robert J. Vanderbei: Linear Programming: Foundations and Extensions (2/e) Springer Science+Business Media LLC (2001)
- Frederick S Hiller, Gerald J Lieberman: Introduction to Operation Research(10/e) McGraw-Hill Education, 2 Penn Plaza, New York 2015)
- 3. Paul R. Thie, G. E. Keough: An Introduction to Linear Programming and Game Theory(3/e) John Wiley and Sons,Ins. (2008)
- 4. Louis Brickman: Mathematical Introduction to Linear Programming and Game Theory UTM, Springer Verlag, N Y (1989)
- 5. Jiri Matoušek, Bernd Gartner: Understanding and Using Linear Programming Universitext, Springer-Verlag Berlin Heidelberg (2007)

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	2	3	3	2	3	2	3	0	2	0	2
CO 1											
	3	2	3	2	3	2	3	1	2	0	2
CO 2											
	3	2	3	2	2	2	2	2	3	0	3
CO 3											

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	√	√	√	\checkmark
CO 2	√	V	√	√	\checkmark
CO 3	\checkmark	√	√	√	\checkmark

Programme	B.Sc. Applie	B.Sc. Applied Mathematics Honours							
Course Code	AMA5EJ309	9(5)							
Course Title	Introducti	Introduction to Actuarial Science							
Type of Course	Elective (Sp	Elective (Specialisation-Actuarial Science)							
Semester	V	V							
Academic Level	300 - 399								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	4	-	60					
Pre-requisites			1						
Course Summary Knowledge about population study and actuarial science									

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Impart Basic concepts in population studies, actuarial science and vital statistics.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Learn about the life tables and its characteristics	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO3	Prepare students to take up a career in Actuarial Practice.	Ε	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam							
# - Factual	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)										

Text Book	1.Shailaja R Deshmukh (2009), Actuarial Statistics:An Introduction using R, Universities Press								
Module	unit	Content	Hours	Marks					
Ι	1.	Sources of vital statistics in India-functions of vital statistics	15						
	2.	Rates and ratios- mortality rates-crude, age specific and standard death rates-fertility and reproduction rates crude birth rates-general and specific fertility rates-gross and net reproduction rates							
	3.	Practical's based on statistical analysis of data related to medical/biological fields using R software which include the statistical tool birth rate, death rate, fertility rate,							
II	4.	Life Tables-complete life tables and its characteristics	10						
	5.	Abridged life tables and its characteristics, principal methods of construction of abridged life tables-Reed Merrel's method							
III	6	Actuarial Science: What is an Actuarial Science?	15						
	7	Insurance companies as Business organizations							
	8	Concept of Risk, Speculative and pure risk, Characteristics of insurable risks							
	9	how does the Insurance business operates?							

	10	Role of Statistics in Insurance, History of Insurance business in India.	
IV	11	Fundamentals of Insurance: Insurance, Features Of a contract, Principles of insurance	10
	12	Peril, Hazard, Types of Hazard, Costs and benefits of insurance to Society	
	13	Insurance Business classification Life (Whole life, term assurance, endowment, money back, ULIP) and non-life (Fire, Marine, Miscellaneous)	
	14	Difference between life and non- life insurance.	
V		Actuarial Profession Overview, Self-Regulatory Measures in Actuarial profession, Role of Actuaries	10

References.

2. S.C. Gupta and V K Kapoor, Fundamentals of applied Statistics, Sulthan Chand and Sons

- 3. Benjamin B, Health and Vital Statistics, Allen and Unwin
- 4. Mark S Dorfman, Introduction to Risk Management and Insurance, Prentice Hall
- 5. C.D. Daykin, T. Pentikainen et al, Practical Risk Theory of Actuaries, Chapman and Hill

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	3	3	1	3	1	2	1	3

	3	1	3	3	3	1	3	1	2	1	3
CO 2											
	3	3	3	3	3	3	3	1	2	1	3
CO 3											

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	~	V	~	~
CO 2	✓	✓	V	~	√
CO 3	V	V	V	~	✓

Programme	B.Sc. Applie	B.Sc. Applied Mathematics Honours							
Course Code	AMA5EJ31	AMA5EJ310(4)							
Course Title	Financial M	Financial Mathematics 1							
Type of Course	Elective (Sp	Elective (Specialisation-Actuarial Science)							
Semester	V	V							
Academic Level	300 - 399	300 - 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	4	-	60					
Pre-requisites			1						
Course Summary	mathematics	Introduces the students to provide basic grounding in basic financial mathematics like simple interest, compound interest, loan calculation and their simple applications.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe how to use a generalized cash flow model in financial transaction. Describe how a loan may be repaid by regular instalments of interest and capital.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Apply different kinds of interest rates expressed in different time periods.	AP	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO3	Recall and use the more important compound interest functions, including annuities certain.	R	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Text Book	Bower, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial Mathematics								
Module	unit	Content	Hours	Marks					
Ι		 Cash flow models: Cash flow process Examples of cash flow scenarios Zero coupon bond, Fixed interest securities, Index linked securities, Cash on deposit, Equity, Annuity, An interest only Loan and Repayment loan. 	10						
	2	Insurance contracts: Pure endowment - An endowment assurance - Term assurance - Contingent annuity - Car insurance policy - Health cash plans							
	3	Time value of money: Interestsimple interest, Compound interest, Accumulation factorsThe principle of consistency							

	4	Present Values Discount rates Simple discount Compound discount Effective rates of interest and discount Equivalent rates		
II	5	Interest Rates: Nominal rates of Interest and discount – Accumulating and discounting using nominal interest and discount rates	15	
	6	The Force of interest: Accumulating and discounting using force of interest Derivation.		
	7	Relationship between effective, nominal and force of interest – The force of interest as a function of time - - Present values		
	8	Real and money rates of interest: Definition of real and money interest rates Deflationary conditions Usefulness of real and		

money interest rates.		
-----------------------	--	--

III	9	Discounting and accumulating: Present values of cash flows Discrete cash flows Continuous cash flows Valuing cash flows - Constant interest rates and sudden changes in interest rates -Interest income.	15
	10	Level Annuities Present values – Payments made in arrear - Payment made in advance- Accumulations – Perpetuities – Continuously payable annuities	

	11	Annuities payable pthly: Present values, Accumulations and Perpetuities Annuities payable pthly where p is less than 1 – Non integer value of n	
	12	Deferred annuities - Annual payments - Continuously payable annuities - Annuities payable pthly - Non integer values of n - Deferred annuities	
IV		Increasing annuitiesVarying annuities Annual payments Continuously payable annuities - Decreasing annuities – Special cases Irregular payments and Compound increasing annuities	8
		Equations of value: The equation of value and the yield on a transaction - The theory – Solving for an unknown quantity – Uncertain payment or receipt – Probability of cash flows Higher Discount rate	
		Loan schedule: Calculating the capital outstanding – Introduction - The theory prospective and retrospective loan calculation – Calculating the interest and capital elements	
V		The Loan schedule Installments payable more frequently than	12
		annually, Consumer credit: Flat rates and APRs	

- 1. ActEd Study Material: Subject CT1
- 2. Mathematical basis of life insurance IC81 Insurance Institute of India maShare
- 3. An Elementary Introduction to Mathematical Finance Sheldon Ross
- 4. An Undergraduate Introduction to Financial Mathematics by Robert Buchanan
- 5. Business Mathematics by Lerner and Zima (Schaum's Outline Series)
- 6. Corporate Finance by Brealy and Myers
- 7. Fundamentals of Actuarial Mathematics by David Promislow
- 8. Investment by Sharpe and Bailey Upper Saddler River, N.J. Prentice Hall, c1999. 9. Investment Science by Luenberger (Indian Edition), Oxford University Press
- 10. Investments by Bodie, Kane and Marcus, McGraw-Hill Irwin, c2005.
- 11. Lecture Notes on Actuarial Mathematics by Jerry Veeh
- 12. Actuarial Mathematics by Bowers et al, Society of Actuaries, USA.
- **NPTEL** Financial Mathematics

By Prof. Pradeep Kumar Jha | IIT Roorkee

https://youtu.be/No1j4gUerDI

1. Actuarial Mathematics. Bowers, Newton L et al. – 2nd ed.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	1	2	1	2	1	2	0	2
CO 2	2	2	3	1	2	1	2	1	2	0	2

	2	2	3	1	2	1	2	1	2	0	2
CO 3											

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	m Assignment Seminar Vi		Viva	End Semester Examinations
CO 1	✓	~	√	~	~
CO 2	~	✓	V	~	✓
CO 3	V	✓	√	~	√

Programme	B.Sc. Applie	B.Sc. Applied Mathematics Honours						
Course Code	AMA6EJ39	AMA6EJ39(5)						
Course Title	Principles of Insurance							
Type of Course	Elective (Specialisation- Actuarial)							
Semester	VI							
Academic Level	300 - 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites								
Course Summary	This course provides a basic understanding of the Insurance Mechanism, relationship between Insurers and their Customers and the importance of Insurance Contacts, gives an overview of major Life Insurance and General Insurance Products.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Classify the various types of risks faced by the insurance industry and solving them using appropriate risk management tools	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Understand the basic knowledge of insurance and its different types	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO3	Identify the functions of insurance company, role of regulatory body for the insurance industry, role of insurance in economic development	Ε	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO4	Estimation of future exposure in insurance industry, calibration of general insurance and analyze how the insurance market function in current scenario.	Ε	М				
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Book	Princi	Principles of Insurance – IC 01 – III.					
Module	unit	Content	Hours	Marks			
	1	The concept of insurance and its evolution Concept of insurance – Insurance (evolved and works)	10				
I	2	Types of insurance					
I	3	Importance of insurance industry					
	4	The Business of Insurance: how risk is managed by individuals and insurers					
	5	Premium Importance of reinsurance-Role of insurance in economic and social development					
II	6	The insurance contract	15				
	7	Introduction – Insurable interest					
,	7	Principle of indemnity					

	8	Subrogation and contribution- Utmost good faith- Proximate cause	
	9	Life insurance products	
		Traditional products – Linked products –	
III	10	Annuities and group policies General Insurance: Concept and scope	15
	11	Nationalization of general Insurance in India in 1972 structure of General Insurance in	
	12	India Privatization and Globalization of General Insurance in India.	
IV	13	Types of General Insurance Fire insurance – Definition – Causes of fire	10
	14	Essential characteristics of fire insurance contracts	
	15	Procedures – Rate fixation	
	16	Kind of fire insurance policies – Policy conditions - Claim settlement	
V	Insura	nce and Retirement Benefits	10

2. George E. Rejda, Principles of Risk Management and Insurance.

- 3. Emmett J. Vaughan, Therese M. Vaughan, Essentials of Risk Management and Insurance
- 4. Risk management by Hull Edition 2002 Jr., C. Arthur C Williams, Peter C Young, Michael L. Smith "Risk Management & Insurance"

***70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.** Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	2	2	2	2	3	3	3	3	2	2	2
CO 1											
	0	3	2	0	2	3	2	2	2	0	0
CO 2											
	0	0	0	2	2	3	3	2	0	0	0
CO 3											

Correlation Levels:

		-			Asses	
Level	Correlation		Correlation 1 S		Slightly / Low	_
			2	Moderate / Medium	Ш	
-	Nil		3	Substantial / High		

Assessment Rubrics:

Assignment/	
Seminar	
Internal Exam	
🛛 Viva	
nal Exam (70%)	F

Π

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	√	\checkmark	~	√
CO 2	\checkmark	V	\checkmark	~	\checkmark
CO 3	1	√	√	~	\checkmark

Programme	B. Sc. Appli	B. Sc. Applied Mathematics Honours					
Course Code	AMA6EJ310	AMA6EJ310(5)					
Course Title	Mathematics of Finance II						
Type of Course	Elective (Specialization-Actuarial science)						
Semester	VI	VI					
Academic Level	300 - 399	300 - 399					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites			1				
Course Summary	Introduce the student's concepts of cost, nature of production and its relationship to business operations, to understand marginal analysis to the "firm" under different market conditions and to integrate the concept of price and output decisions of firms under various market structure.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Under stand the working and application of advanced financial products like stocks and derivatives	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

CO2	Knowledge about how duration and convexity are used in the immunization of a portfolio of liabilities	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO3	To Concept of equation of value to solve bond, equity and property according to tax liability	Е	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Book	1. Bower, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial Mathematics						
Module	unit	Content	Hours	Marks 70			
Ι	1	Project Appraisal I: Introduction – Estimating cash flows – Fixed interest rates Accumulated value, Net present value and internal rate of return	12				
	2	The comparison of two investment projects – Different interest rates for lending and borrowing – Payback period - Other considerations					

3	Project Appraisal II: Definition of a capital project – Definition of project – Evaluation of cash flows Methods of project evaluation – Annual capital charge Payback period – Nominal returns – Strategic fit – Opportunity cost Hurdle rates	
4	Evaluation of risky projects: Simulation Sensitivity analysis – Scenario testing – Monte Carlo stimulation – Probability trees – Certainty equivalents	

5	Uncertain income securities: Equities – Property - Real rate of interest.	12		
---	--	----	--	--

п	6	Inflation adjusted cash flows – Calculating real yield using an inflation index – Calculating real yields given constant inflation assumption – Payments related to the rate of inflation – The effects of inflation –Index-linked bonds		
III	7	Term structure of interest rates: Discrete time – Discrete time spot	10	
		rates Discrete time forward rates.		
	8	Theories of time-term structure of interest rates – Why interest rates vary over time TheoriesYields to maturity – Par yields.		

IV	9	Weighted Average Cost Of Capital: Introduction – The importance of the discount rate Defining the weighted average cost of capital Modigliani and miller Their view	14	
	10	CAPM: Cost of equity – CAPM and risk – Systematic risk – Beta as a measure of systematic risk – Measuring beta – Market derived real discount rate.		
	11	Cost of debt Marginal or average cost Determinants – Calculation of WACC.		
V		Bonds Equity And Property Fixed interest securities – Calculating the price Allowing for income tax Capital gains tax Capital gains test Calculating yields Deferred income tax. Duration, convexity and immunization - Interest rate risk Effective duration – Duration – Convexity – Immunization	12	

References:

1. Promislow, S. D. (2014). Fundamentals of Actuarial Mathematics. John Wiley & Sons.

- Booth, P., Haberman, S., Chadburn, R., James, D., Khorasanee, Z., Plumb, R. H., &Rickayzen, B. (2004). Modern actuarial theory and practice. Chapman and Hall/CRC.
- 3. Harrison, F., & Lock, D. (2017). Advanced project management: a structured approach. Routledge.

4. Ingersoll, J. E. (1987). Theory of Financial decision making (Vol. 3). Rowman& Littlefield.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	3	2	3	3	3	2	3	2	2	1	3
CO 1											
	3	2	3	3	3	2	3	2	2	1	3
CO 2											
	3	2	3	3	3	2	3	2	2	1	3
CO 3											

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
 - Internal ExamViva
 - IVivaIFinal Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	~	\checkmark	√	\checkmark
CO 2	√	√	\checkmark	✓	√
CO 3	\checkmark	\checkmark	√	✓	\checkmark

Elective 4th year

Program	B.Sc. App	B.Sc. Applied Mathematics Honours				
Course Code	AMA8EJ	AMA8EJ406				
Course Title	Discrete	Time Control Syst	tem			
Type of Course	Major					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours		
	4	4	-			
Pre-requisites	Different	ial Equations, Com	plex analysis			
Course Summary	This course is the follow-on to Continuous Control Systems and presents a comprehensive introduction to the theory and design of discrete-time control systems. Representation, modeling, and analysis of discrete-time / sampled-data systems are first discussed.					

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools
				used

Program	B.Sc. App	B.Sc. Applied Mathematics Honours					
Course Code	AMA8EJ	AMA8EJ401					
Course Title	Analytic	al Number Theory	7				
Type of Course	Elective						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours			
		per week	per week				
	4	4	-				
Pre-requisites	Algebra a	and Complex Analy	vsis				
Course Summary	Topics co	overed might includ	de: the prime number	theorem,			
	Dirichlet	L-functions, zero-f	ree regions, sieve met	hods,			
	represent	ation by quadratic f	forms, and Gauss sum	s. Including			
	the use of	f zeta functions and	L-functions to prove	distribution			
	results co	ncerning prime nu	mbers (e.g., the prime	number			
	theorem i	n arithmetic progre	essions).				

COURSE OUTCOME(CO)

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO 1	Understand and analyse the properties of arithmetical functions, including the Mobius function, Euler totient function, and their relationships and products.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO 2	Apply Dirichlet multiplication and inversion formulas to solve problems involving arithmetical functions, including the Mangoldt function and Liouville's function	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO 3	Evaluate and create asymptotic formulas and theorems related to the distribution of prime numbers and quadratic residues, utilizing tools such as Chebyshev's functions and the quadratic reciprocity law.	С	F	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	member (R), Understand (U), Apply (Ap), A ledge (F), Conceptual Knowledge (C), Proc			

Text	1. Intro	oduction to Analytic Number Theory– Tom.M.Apostol, Nar	°osa.	
Module	Unit	Content	Hours75	Marks
I	1	Arithmetical Functions and Dirichlet Multiplication:Introduction-The mobius function $\mu(n)$ The Euler totient function $ø(n)$ A relation connecting $ø$ and μ A product formula for $ø(n)$	10	
	2	Dirichlet product of arithmetical functions Dirichlet inverse and mobius inversion formula The Mangoldt function $\Lambda(n)$		
II	5	Dirichlet product of arithmetical functions Dirichlet inverse and mobius inversion formula The Mangoldt function $\Lambda(n)$	10	
III	8	Averages of Arithmetical functions: Introduction The big oh notation. Asymptotic equality of functions Euler's summation formula Some elementary Asymptotic formulas The Average order of $d(n)$ The Average order of the divisor functions The average order of $\varphi(n)$ An application to the distribution of lattice points visible from the origin The average order of $\mu(n)$ and $\Lambda(n)$ The partial sums of Dirichlet product.	10	
IV	10	Some Elementary Theorems on the Distribution of Prime Numbers: Introduction Chebyshev's functions Relations connecting $v(x)$ and $\pi(x)$ Some equivalent forms of the prime number theorem Inequalities for $\pi(n)$ and $\mathcal{P}n$ Shapiro's Tauberian Theorem An Asymptotic formula for the partial sums $\sum_{p \leq x} (1/p)$ The partial sums of the Mobius function.	10	

V	Finite Abelian Groups and Their Characters: Definition- Examples of groups and subgroups- Elementary properties of groups- Construction of subgroups- Characters of finite abelian groups. The character group- The orthogonality relations for characters- Dirichlet Characters- Sums involving	35	
. References:	Dirichlet Characters- The non-vanishing of L(1, x) for real non principal x.		

- 1. Analytic Number Theory Raymond Ayoub, American Math. Society .
- 2. An Introduction to the Theory of Numbers G.H Hardy, E. M Wright, Oxford University Press.

***70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.** Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	1	2	1	1	3	0	3	1	2	0	3
CO 1											
	2	3	2	1	3	0	3	1	2	0	3
CO 2											
	3	2	3	2	3	0	3	1	2	0	3
CO 3											

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assi	ignr	nent	:/ Sen	ninar
		Inte	rnal I	Exam
				Viva
	Fir	nal Ex	kam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	~
CO 2	\checkmark	\checkmark	\checkmark	~	✓
CO 3	\checkmark	~	\checkmark	\checkmark	✓

Program	B.Sc. App	B.Sc. Applied Mathematics Honours					
Course Code	AMA8EJ	402					
Course Title	Numeric	al Methods for Pa	artial Differential Eq	uations			
Type of Course	Elective	Elective					
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours			
	4	4	-				
Pre-requisites	B. Sc Ma	athematics					
Course Summary	This course contains numerical solution for parabolic,						
	elliptic a	nd hyperbolic equ	uation with error app	proximations.			

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used				
CO 1	Gain a fundamental understanding of finite difference method for solving partial differential equation.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO 2	To equip the students with the finite element analysis fundamentals	AP	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO 3	To train the students to use this knowledge in related research area.	С	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge							

	- G.D. Smith, Brunel University, Clarandon Press Oxford.	TT 77	
Module	Content	Hours75	Marks
Ι	Introduction to finite difference formula Parabolic	10	
	equation – Explicit finite difference approximation to		
	one dimensional equation Crank – Nicholson implicit		
	method – Derivation boundary conditions		
II	Alternate direction implicit (ADI) method finite	10	
	difference in cylindrical and spherical polar		
	coordinates. Convergence Stability and consistency:		
	Definitions of local truncation error and consistency		
	convergence analysis – stability analysis by matrix		
	method eigenvalue von Newmann stability methods,		
	global rounding error – local truncation error – Iax's		
	equation theorem.		
III	Hyperbolic Equations : Analytical solution of 1 _{st}	10	
	order quasi linear equation – Numerical Integration		
	along a characteristic Iax wenderoff explicit method.		
	CFL condition wenderoff implicit approximation –		
	Propagation of discontinues – Numerical solution by		
	the method of characteristics.		
IV	Elliptic Equations: Introduction – Finite differences	18	
	in polar co-ordinates – formulas for derivative near a		
	curved boundary analysis of the discretization error of		
	the five point approximation to polman's equation		
	over a rectangle.		
	Systematic iterative methods for large linear systems		
	- necessary and sufficient condition for convergence		
	of iterative methods – stones implicit methods. Finite		
	Element Method: weighted residual method –		
	variations methods – division of the region into		
	elements linear element – Galerkin formulation		
V	Practicals of above discussed methods using any	12	
	software		

and D.F. Grnra, John Wiley
Numerical Methods for Engineers and Scientists – Joe D.Hoffman, Mc Graw Hill.

Applied Finite Element Analysis – Larry J. Segerlind, John Wiley. 3.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	1	3	2	2	1	3
CO 2	3	3	3	3	3	1	3	2	2	1	3
CO 3	3	2	2	3	3	2	3	2	2	1	3

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	~	\checkmark	~	✓
CO 2	\checkmark	\checkmark	\checkmark	~	✓
CO 3	\checkmark	\checkmark	\checkmark	~	✓

Program	B.Sc. Applied Mathematics Honours						
Course Code	AMA8EJ403						
Course Title	Differen	tial Equations and	Dynamical System				
Type of Course	Elective						
Semester	8						
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours			
	4	4	-				
Pre-requisites	Theory of	of Ordinary differen	ntial equations				
Course Summary	and meth dynamic techniqu In particu systems, phase pla Lyapuno Poincaré	nods from the theor al systems, includi es for the study of ular, the student is existence and unic ane analysis, equili v's Direct Method	et knowledge of basi ry of differential equa ng analytical and geo qualitative properties familiar with linear a queness, continuous of ibria, limit cycles, sta , index theory, the n, the additional topic	ations and ometrical s of solutions. nd nonlinear lependence, bility,			

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO1	The student is able to apply his or her knowledge to the study of concrete examples	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	The student masters central techniques of proof and is able to apply these to related problems	AP	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

CO3	Students will Learn and use various tools for the analysis and control of	Е	Р	Internal Exam/				
	nonlinear systems			Assignment/				
				Seminar/				
				Viva/ End				
				Sem Exam				
* - Rem	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual							
Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge								
(M)								

Text	Differential Equations, Dynamical Systems and an Introduction to Chaos- M.W.Hirsch, Stephens Snale, Rldevaney, ELSE WEAR Press							
Module	Unit							
I	1	Linear Systems: Uncoupled Linear Systems Diagonalization	10	Warks				
		Exponentials of Operators						
	2	The Fundamental Theorem for Linear Systems						
		Linear Systems in R ₂						
		Complex Eigen Values						
		Multiple Eigen Values						
		Jordan Forms- Stability Theorem						
		Non homogeneous Linear Systems.						
II	3	Nonlinear Systems: Local Theory Some Preliminary Concepts and Definitions The Fundamental Existence Uniqueness Theorem Dependence on Initial Conditions and Parameters The Maximal Interval of Existence	10					
	4	The Flow Defined by a Differential Equation Linearization The Stable Manifold Theorem The Hartman Grobman Theorem Stability and Lyapunov Functions Saddle- Nodes- Foci and Centers Nonhyperbolic Critical Points in <i>R</i> ₂ Gradient and Hamiltonian Systems.						

III	5	Nonlinear Systems: Global Theory- Dynamical	18
		Systems and Global Existence Theorems	
		Limit Sets and Attractors	
		Periodic Orbits	
		Limit Cycles and Separatrix Cycles	
		The Poincare Map	
	6	The Stable Manifold Theorem for Periodic Orbits	
		Hamiltonian Systems with Two Degrees of Freedom	
		The Poincare Bendixson Theory in <i>R</i> ₂	
		Lienard Systems – Bendixon's Criteria	
		The Poincare Sphere and separatrix	
IV	7	Nonlinear Systems: Bifurcation Theory- Structural	10
		Stability and Peixoto's Theorem	
		Bifurcations at Non- Hyperbolic Equilibrium Points	
		Hopf Bifurcation and Bifurcation of Limit Cycles	
		from a Multiple Focus.	
	8	Bifurcations at Non- Hyperbolic Periodic Orbits- One	
		Parameter Families of Rotated Vector Fields	
V		Configurations Index	12
		Theory.	
		The Global Behavior of One Parameter Families	
		of Periodic Orbits- Homoclinic Bifurcations-	
		Melnikov's Method.	
. Refer	ences:	·	· · · · ·
1. Diffe	rential Ec	quations and Dynamical Systems- Lawrence Perko, Spring	er.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	3	3	1	2	1	2	1	3
CO 2	3	2	3	3	3	1	2	1	2	1	3
CO 3	3	3	3	3	3	1	3	1	2	1	3

Correlation:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	✓
CO 2	✓	~	✓	~	✓
CO 3	✓	~	\checkmark	\checkmark	\checkmark

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours				
Course Code	AMA8EJ	AMA8EJ404				
Course Title	Relativity and Cosmology					
Type of Course	Elective					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours		
	4 4 -					

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools
		Level	Category	used
CO 1	Describe the concept of Tensor and their properties.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO 2	Describe the concepts flat space and space of constant curvature.	AP	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO 3	Explain the meaning and significance of the postulate of Special Relativity.	U	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO 4	Explain true nature of Lorentz transformation and their consequences	U	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

CO	Explain	relativistic	U	С	Internal			
5	transformation equ	ations for			Exam/			
C	mass, work and kinet	ic energy.			Assignment/			
					Seminar/			
					Viva/ End			
					Sem Exam			
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual							
Know	Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge							
(M)								

Text	1. Barry Spain, Tensor Calculus-Radha Publishing House, Calcutta.						
	2.	R.C. Tolman, Relativity, Thermodynamics and Cosm	ology, Clai	rendon			
	Pres	s, Oxford.					
Module	Unit	Content	Hours75	Marks			
I	1	Tensor Analysis: N-dimensional space, covariant and contravariant vectors, contraction, second & higher order tensors, quotient law, fundamental tensor, associate tensor, angle between the vectors, principal directions, Christoffel symbols, covariant and intrinsic derivatives, geodesics (Chapters 1 to 4 of Text book.1).	12				
II	2	Riemann Christoffel Tensor, covariant curvature tensor and its properties, Ricci Tensor, Curvature invariant, Einstein space, Bianchi's identity, Riemannian Curvature, Einstein space, flat space, space of constant curvature, Schur's Theorem (Chapter V of Text book.1).	12				
III	3	Space-time continuum, the three plus one dimensions of space-time, the geometry corresponding to space-time, the signature of the line element and the three kinds of interval, Lorentz rotation of axes, transformation to proper coordinates (Chapter II, Articles 13-18 of Text book 2).	12				

IV	4	The mass of a moving particle, the transformation equations for mass, work and kinetic energy, the relations between mass, energy and momentum, Four-dimensional expressions of the mechanics of a particle (Chapter III, Articles 23-28 of Text book 2).	12	
V		The Maxwell-Lorentz Field Equations, The transformation equations for E, H and Q. The force on a moving charge, The energy and momentum of electromagnetic field, electromagnetic stresses, Four dimensional expressions for electron theory (Chapter IV, Articles 39-43 & 46 of Text book 2).	12	
	1		1	

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	1	2	0	2	0	3
CO 2	3	2	3	3	3	1	3	0	2	0	3
CO 3	3	3	1	2	2	1	1	0	2	0	3
CO4	3	2	2	2	2	2	1	0	2	0	3
CO5	3	3	2	2	2	2	2	0	2	0	3

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

□ Assignment/ Seminar Internal Exam 🛛 Viva Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Mapping of course outcomes with the program outcomes									
	PO1	PO2	PO3	PO4	PO5					
CO1		\checkmark	\checkmark	-	-					
CO2	\checkmark	\checkmark	\checkmark	-	-					
CO3	\checkmark	-	N	\checkmark	-					
CO4	\checkmark	-	\checkmark	\checkmark	-					
CO5	V	-	\checkmark	\checkmark	-					

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours						
Course Code	AMA8E.	AMA8EJ405						
Course Title	Elasticit	Elasticity						
Type of Course	Elective							
Semester	8							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours				
	4	4	-					
Pre-requisites		·		·				
Course Summary	understar with basi dimensio	The main objective of this course- To make students understand the principles of elasticity. To familiarize students with basic equations of elasticity. To expose students to two dimensional problems in Cartesian and polar coordinates. To make students understand the principle of torsion of prismatic						

СО	CO Statement	Cognitiv e Level*	Knowledge Category	Evaluatio n Tools used
CO1	To apply elastic analysis to study the fracture mechanics.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To apply linear elasticity in the design and analysis of structures such as beams, plates, shells and sandwich composites.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	To apply hyper elasticity to determine the response of elastomer-based objects.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

CO4	To analyze the structural sections	An	С	Internal
	subjected to torsion.			Exam/
				Assignment/
				Seminar/
				Viva/ End
				Sem Exam
* - Reme	ember (R), Understand (U), Apply (Ap), An	alyze (An), Ev	aluate (E), Create	(C) # - Factual
Knowled	dge (F), Conceptual Knowledge (C), Procee	dural Knowled	lge (P), Metacogn	itive Knowledge
(M)				

Text	1. Hetnarski R.B. and Ignaczak J. "Mathematical Theory of Elasticity", Taylor & Francis, London, 2004.							
	 Sokolnikoff I.S. "Mathematical Theory of Elasticity", Tata-McGraw Hill, New Delhi, 1974. Achenbach J.D. "Wave Propagation in Elastic Solids", North-Holland Pub. Co., Amsterdam, 1973. 							
Module	Unit	Content	Hours75	Marks				
I	1	ANALYSIS OF STRAIN 9 Deformation, strain tensor in rectangular Cartesian coordinates, Geometric interpretation of infinitesimal strain, rotation, compatibility of strain components, properties of strain tensor, strain in spherical and cylindrical polar coordinates.	10					
	2							
Π	5	ANALYSIS OF STRESS 9 Stresses, laws of motion, Cauchy's formula, equations of equilibrium, transformation of coordinates, Plane state of stresses, Cauchy's stress quadric, shearing stress, Mohr's circle, stress deviation, stress tensor in general coordinates, physical components of a stress tensor in general coordinates, equation of equilibrium in curvilinear coordinates.	10					
III	8	LINEAR THEORY OF ELASTICITY 8 Generalized Hooke's law, Stress-Strain relationship for an isotropic elastic material, Basic equation of elasticity for homogeneous isotropic bodies, boundary value problems, the problem of equilibrium and the uniqueness of solution of elasticity, Saint-Venant's principle.	10					
IV	10	TORSION 7 Torsion of prismatic bars, torsion of circular, elliptic and rectangular bars, membrane analogy, torsion of rectangular section and hollow thin walled sections.	10					

	11	SOLUTION OF TWO AND THREE DIMENSIONAL PROBLEMS IN ELASTICITY 12 Bending of a cantilever beam, simply supported beam with simple loadings. Semi-infinite medium subjected to simple loadings. Plane elastic waves, Rayleigh surface waves, Love waves, Vibration of an infinite isotropic solid cylinder.						
V		Applied problems of all modules	35					
1. Srinath L.S., "Advanced Mechanics of Solids", Tata McGraw Hill, New Delhi, 3 rd Edition, 2008								
	•	., "Foundations of Solid Mechanics", Prentice Hall Inc., Ne	w Jercy, 190	65.				

AM 9026 ALGORITHMIC GRAPH THEORY L T P C

***70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.** Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	3	3	1	1	0	2	0	3
CO 2	3	1	3	3	3	1	2	0	2	0	3
CO 3	3	3	3	3	3	1	1	0	3	0	3
CO4	3	2	1	3	2	1	2	0	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	\checkmark	\checkmark	✓

CO 2	√	~	\checkmark	~	✓
CO 3	~	~	\checkmark	\checkmark	✓
CO4	\checkmark				\checkmark

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours				
Course Code	AMA8EJ	AMA8EJ406				
Course Title	Discrete	Time Control Syst	tem			
Type of Course	Elective					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours		
		per week	per week			
	4	4	-			
Pre-requisites	Different	ial Equations, Com	plex analysis			
Course Summary	This cou	rse is the follow-or	to Continuous Contro	ol Systems and		
	presents a	a comprehensive in	troduction to the theor	y and design		
	of discrete-time control systems. Representation, modeling, and					
	analysis o	analysis of discrete-time / sampled-data systems are first				
	discussed	l.				

CO	CO Statement	Cognitive	Knowledge	
		Level*	Category	n Tools
				used
CO	To train and motivate the students towards	Ар	С	Internal
1	mathematical modeling	-		Exam/
-				Assignment/
				Seminar/
				Viva/ End
				Sem Exam
CO	To understand various real world	AP	Р	Internal
2	problems which use applications of			Exam/
-	mathematics			Assignment/
				Seminar/
				Viva/ End
				Sem Exam
* - Rei	nember (R), Understand (U), Apply (Ap), A	nalyze (An), Ev	valuate (E), Create	(C) # - Factual
Knowl	edge (F), Conceptual Knowledge (C), Proc	edural Knowled	lge (P), Metacogn	itive Knowledge

Text				
Module	Unit	Content	Hours75	Marks
I	1	Introduction to Discrete Time Control Systems: Introduction - Digital Control Systems - Quantizing and Quantization Error - Data Acquisition, Conversion and Distribution Systems.	10	
	2	Z Transform : Introduction - Z Transforms of Elementary Functions – Important properties and theorems - The Inverse Z transform- Method for solving difference equations.		
II	5	Z-Plane Analysis of Discrete - Time Control Systems : Introduction - Impulse Sampling and data hold - Obtaining the Z Transform by the Convolution integral Method - The pulse transfer function.	10	
III	8	Design of Discrete-Time Control Systems by Conventional Methods : Introduction - Mapping between the S plane and the Z plane - Stability analysis of closed Loop systems in the Z plane.	10	
IV	10	State-Space Analysis : Introduction - State - Space representations of discrete time systems - Solving discrete-time state Space equations - Pulse- transferfunction matrix - Discretization of continuous- time state - space equations - Liapunov stability analysis.	10	
	11	Pole placement and observer design : Introduction - Controllability - Observability - Useful transformations in state - Space analysis and design - Design via pole placement - State observers.		
V		Applied problems of all modules	35	
Delhi. <u>Ref</u> 1. Digital (<mark>erences</mark> : Control ι	Control Systems- Katsuhiko, Ogata Prentice, Hall of India P using Digital Signal Processing- FarzadNekoogar& G Moria e Rover- New Jersey.		

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	3	1	3	3	3	1	3	1	2	1	3
CO 1											
	3	1	3	3	3	1	3	1	2	1	3
CO 2											

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	~	~	\checkmark	~
CO 2	\checkmark	~	~	\checkmark	✓

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours				
Course Code	AMA8E.	AMA8EJ407				
Course Title	Differen	Differential Geometry				
Type of Course	Elective	Elective				
Semester	VII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours		
	4	4	-			
Pre-requisites	Calculus	•				

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO1	To recognize the concept of curves and surfaces	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To understand the concept of curvature of a surface and able to compute the curvature of space curves.	AP	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	To understand geodesic as a distance minimizing curves on surfaces and find the geodesic of various surfaces	U	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ember (R), Understand (U), Apply (Ap), A dge (F), Conceptual Knowledge (C), Proc			

7	fext	

Module	Unit	Content	Hours75	Marks
Ι	1	Chapter 1 Graphs and Level Sets	15	
	2	Chapter 2 Vector Fields		
II	5	Chapter 3The Tangent Space	10	
		Chapter 4Surfaces		

1	72
-	. –

III	8	Chapter 5 Vector Fields on Surfaces; Orientation	13
		Chapter 7 Geodesics	
IV	10	Chapter 8 Parallel Transport	10
	11	Chapter 9 The Weingarten Map	
V		Curve sketching of above discussed using any software	12

. References

- 1. W.L. Burke: Applied Differential Geometry Cambridge University Press (1985)
- 2. M. de Carmo: Differential Geometry of Curves and Surfaces Prentice Hall Inc Englewood Cliffs NJ (1976).
- 3. V. Grilleman and A. Pollack: Differential Topology Prentice Hall Inc Englewood Cliffs NJ (1974).
- 4. B. O'Neil: Elementary Differential Geometry Academic Press NY (1966).
- 5. M. Spivak: A Comprehensive Introduction to Differential Geometry, (Volumes 1 to 5) Publish or Perish, Boston (1970, 75).
- 6. R. Millmen and G. Parker: Elements of Differential Geometry Prentice Hall Inc Englewood Cliffs NJ (1977).
- 7. I. Singer and J.A. Thorpe: Lecture Notes on Elementary Topology and Geometry UTM, Springer Verlag, NY (1967)

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	DCO1	DCO2	DCO2	DCO4	DO1	DOJ	DO2		DOS	DOC	DO7
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	2	1	3	3	2	0	1	1	2	0	3
CO 1											
	2	1	3	3	2	0	1	1	2	0	3
CO 2											
	3	3	3	3	2	0	1	1	2	0	3
CO 3											

Program	B.Sc. Ap	B.Sc. Applied Mathematics Honours						
Course Code	AMA8EJ	AMA8EJ408						
Course Title	Rings an	Rings and modules						
Type of Course	Elective							
Semester	VIII	VIII						
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practical/Practicum	Total Hours				
		per week	per week					
	4	4	-					
Pre-requisites								
Course Summary	The aim	of this course is	to introduce commu	tative				
	algebra.	This theory has d	eveloped not just as	a standalone				
	area of a	lgebra, but also a	s a tool to study othe	er important				
	branches	of Mathematics	including Algebraic	Geometry				
		ebraic Number Th	00	2				

СО	CO Statement	Cognitive Level*	Knowledge Category	Evaluatio n Tools used
CO 1	Learn basic properties of commutative rings, ideals and modules over commutative rings	U	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO 2	Learn the basic theory of Noetherian and Artin Rings	U	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	nember (R), Understand (U), Apply (Ap), A edge (F), Conceptual Knowledge (C), Proc			

Text	Siegrr	Siegrried Bosch, Algebraic geometry and commutative algebra, 2 nd edition								
Module	Unit	Content	Hours60	Marks						
				70+30						
I	1	Rings and ideals, local rings and localization of rings, Radicals (sections 1.1-1.3 from chapter 1 text 1)	12							

II	2	Modules, Finiteness conditions and the Snake lemma	12	
		(Sections 1.4 and 1.5 from chapter 1)		
III	3	The theory of Noetherian Rings, Primary	12	
		Decomposition of ideals, Artinian Rings and		
		Modules		
		(sections 2.1 and 2.2 from Chapter 2)		
IV	4	The Artin-Rees lemma, Krull Dimension	12	
		(section2.3and 2.4)		
		Integral extensions, integral dependence, Noether		
		Normalization and Hilbert's Nullstellensatz, The		
		Cohen-Seidenberg Theorems		
		(sec 3.1-3.3)		
V		Extensions of coefficients and Descent, tensor	12	
		products, flat modules, extension of coefficients(sec		
		4.1-4.3)		
. 1. M. F	. Atiyah an	d I. G. MacDonald, Introduction to Commutative Algebra,	Addison We	sley
(1969).				
	-	lakrishnan, Commutative Algebra, Oxonian Press (1984).		
		ndergraduate Commutative Algebra, LMS Student Texts (2	9), Cambrid	ge Univ.
Press (19	/		13.6.4	<i>.</i> .
	Matsumura	, H., Commutative Ring Theory, Cambridge Studies in Adv	anced Math	ematics,
1989				

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module. Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	3	3	1	1	0	2	0	3
CO 2	3	1	3	3	3	1	2	0	2	0	3

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	✓
CO 2	\checkmark	~	\checkmark	\checkmark	\checkmark

Programme	B Sc Ap	B Sc Applied Mathematics Honours						
Course Code	AMA8E	EJ409						
Course Title	Mathem	natics of Wavelets						
Type of Course	ELECT	ELECTIVE						
Semester	VIII	VIII						
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	5	••	75				
Pre-requisites	Real ana	lysis and linear algebra						
Course Summary	*	To expose the students to the basics of wavelet theory and to illustrate the use of wavelet processing for data compression and noise suppression.						

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand the concepts of continuous wavelet transform.	U	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam					
CO2	Improve problem solving skills using discrete wavelet transform and filter banks.	Ар	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam					
CO3	Understand the concepts of Multiresolution analysis. Learn the various applications of wavelet.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam					
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Text	R. M.	Rao and Ajit S. Bopardikar, "Wavelet Transform, Intro	duction to	theory and						
Book	Applications", Addison-Wesley, 1998.									
Module	Unit	Content	Hours	Marks						
				Ext:70						
Ι	1	Continuous Wavelet Transform	20							
		1.1 Introduction								
		1.2 Continuous -Time Wavelets(including								
		Problems at the end of the chapter)	-							
	2	1.3 Definition of the CWT(including Problems at								
		the end of the chapter								
	3	1.4The CWT as a Correlation(including								
		Problems at the end of the chapter	-							
	4	1.5Constant Q-Factor Filtering interpretation and								
		Time -Frequency Resolution(including Problems								
		at the end of the chapter								
	5	1.6The CWT as an Operator(including Problems								
		at the end of the chapter								
	6	1.7Inverse CWT(including Problems at the end	20							
		of the chapter								
II	7	2.1 Introduction								
		2.2Approximation of Vectors in Nested Linear								
		Vector Subspaces								
		2.21Examples of Approximating Vectors in								
		Nested subsequence of an Infinite -Dimensional								
		linear Space(including Problems at the end of the								
		chapter)								
	8	Example of an MRN								
		2.3.1 Bases for the Approximation Subspace and								
		Harr Scaling Function								
		2.3.2 Bases for the Detail Sunspace of Harr								
		Wavelet(including Problems at the end of the								
		chapter)	-							
	9	2.3.3 Digital Filter Implementation of the 20Harr								
		Wavelet Decomposition (including Problems at								
		the end of the chapter)								

	10	3 MRA, Orthogonal Wavelets and Their]	
		Relationship to Filter Banks		
	11			
		3.1Introduction		
		3.2Formal Definition of an MRN(including		
		Problems at the end of the chapter)		
	12	3.3Construction of an MRN		
		3.3.1Scaling Functions and Subspaces		
		3.3.2Implications of Dilation Equation and		
		Orthogonality(including Problems at the end of		
		the chapter)		
III	13	3.4 A wavelet Basis for MRN	20	

		3.4.1 Two-Scale Relation for y(t)		
		3.4.2Basis for the Detail subspaces		
		3.4.3Direct Sum Decomposition(including		
		Problems at the end of the chapter)		
	14	3.5Digital Filtering Interpretation		
		3.5.1Decomposition Filters		
		3.5.2Reconstructing the signal(including		
		Problems at the end of the chapter)		
	15	Examples of Orthogonal Basis – Generating		
		Wavelets(including Problems at the end of the		
		chapter)		
	16	3.6.1 Daubechies D4 Scaling Function and		
		Wavelet		
		3.6.2Bandlimited Wavelets(including Problems at		
		the end of the chapter)		
	17	Interpreting Orthonormal MRAs for Discrete-		
		Time Signals		
		3.7.1Continuous – Time MRN Interpretation for		
		DTWT		
		3.7.2Discrete- Time MRA		
		3.7.3Basis Function for the DTWT(including		
		Problems at the end of the chapter)		
IV	18	4 Alternative Wavelet Representations	20	
		4.1Introduction		
		4.2Biorthonormal Wavelets(including Problems at		
		the end of the chapter		
	19	4.3Filtering Relationship for Biorthogonal		
		Filters(including Problems at the end of the		
		chapter)		
	20	4.4 Examples of Biorthogonal Scaling Functions		
		Wavelets(including Problems at the end of the		
		chapter)		
	L	•		1

21		4.5Two Dimensional Wavelets				
22		4.6Nonseparable Multidimensional				
		Wavelets(including Problems at the end of the				
		chapter				
	23	Wavelet Packets(including Problems at the end of				
		the chapter				
V		Wavelet Transform and Data compression,	15			
		Transform Coding, DTWT for image				
		compression, Audio Compression, other				
		applications of wavelet Transforms				
References						
	1. Gilbert Strang and Truong Nguyen, "Wavelets and Filter banks", Wellesley Cambridge Press, 1996.					

- 2. K. P. Soman, K. I. Ramachandran, "Insight into Wavelets: From Theory to Practice", Third Edition, PHI, 2004.
- S. Mallat, "A Wavelet Tour of Signal Processing", 2nd edition, Academic Press, 1999.
- 4. M. Vetterli, J. Kovacevic, "Wavelets and Sub band Coding", Prentice Hall, 1995.

5.Raghuveer rao ,Ajit S.Bopardikar, "Wavelet transforms: Introduction, Theory and applications", Pearson Education Asia, 2000.

6. J.C. Goswami, A.K. Chan, "Fundamentals of Wavelets: Theory, Algorithms, and Applications", 2nd ed., Wiley, 2011.

Michel Misiti, Yves Misiti, Georges Oppenheim, JeanMichel Poggi, John,
 "Wavelets and their Applications", Wiley & Sons, 2010.

8. J S Walker, "A premier on Wavelets and their scientific applications", CRC press, 2002.

9. Stark, "Wavelets and signal processing: An application based introduction", Springer, 2005.

10. Gerald keiser, "A friendly guide to Wavelets", Springer, 2011.

Web References: 1.https://www.elsevier.com/books/a-wavelet-tour-of-signalprocessing/mallat/978-0-12-466606-1

2.https://www.pearson.com/us/highereducation/program/Rao-Wavelet-Transforms-Introduction-to-TheoryandApplications/PGM39927.html 3. http://www.wavelet.org/

E-Text Books: 1. http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

2 http://www.math.hawaii.edu/~dave/Web/Amara's%20Wavelet%20Page.htm

MOOC Course

1. nptel.ac.in/courses/103106114/48

2. https://ocw.mit.edu/.../18-327-wavelets-filter-banks-and-applications-spring-2003/

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	1	-	-	3	1	2
CO 2	3	2	2	2	3	1	-	-	3	1	2
CO 3	3	2	2	2	3	1	-	-	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Report
 Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	~	\checkmark	\checkmark	✓
CO 2	~	~	~	√	✓
CO 3	√	\checkmark	\checkmark	\checkmark	\checkmark

Programme	B. Sc. Applied M	athematics Honours						
Course Code	AMA8EJ410							
Course Title	Functional Anal	Functional Analysis						
Type of Course	ELECTIVE							
Semester	VIII							
Academic	400 - 499							
Level								
Course Details	Credit	lecture/Tutorial per week	Practicum per week	Total Hours				
	4	4		60				
Pre-requisites	Linear algebra		· ·					
Course	The course is aim	ed to provide a thorough under	standing of function	onal analysis The				
Summary	focus of the cour	rse is on the study of norme	d linear space, H	lilbert space and				
	spectral theory.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To learn the concept of normed linear spaces and Hilbert spaces.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To learn various properties operators defined on both normed and Hilbert spaces.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	To understand the concept dual space.	U	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

CO4	To learn the completeness of the space	U	С	Internal Exam/					
	bounded linear operators			Assignment/					
				Seminar/ Viva/					
				End Sem Exam					
* - Re	emember (R), Understand (U), Apply (A	Ap), Analyse	e (An), Evaluate	e (E), Create (C)# -					
Factua	Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Know	ledge (M)								

Detailed Syllabus

Text	Introductory Functional Analysis with Applications' by E.Kreyszig						
Book							
Module	Unit	Content	Hr s (60)	Externa l Marks (70)			
Ι		Module I					
	1	Normed Spaces and Banach Spaces (15 Hours)					
		 Introduction to Functional Analysis Basic concepts of functional analysis. Historical background and significance. 					
	2	2. Normed Spaces					
		Definitions and examples. Normed space properties and the concept of norm. Equivalent norms	15	Min 15			
	3	3. Banach Spaces	-				
		Definition and examples.					
		The concept of completeness.					
	4	Subspaces, quotient spaces, and linear operators4. Finite Dimensional Normed Spaces					
		The Heine-Borel theorem.					
		Riesz lemma					
II		Module II					

5	Inner Product Spaces and Hilbert Spaces (15 Hours)	
	1. Inner Product Spaces Definitions and examples. Properties of inner products. Parallelogram law and polarization identity.	

operators. • Self-adjoint, unitary, and normal operators • Operators • Definition 10 1. Compact Operators • Definition and properties. • Examples and	III	6	 1. Hilbert Spaces Definition and properties. 		Min 15
spectral properties IV	IV	 8 Linear Operators (15 Hours) Bounded and Unbounded Operators (4 Hours) Definitions and examples. Definitions and examples. Bounded linear operators. The concept of operator norm Adjoint Operators Definition and properties. Examples of adjoint operators. Self-adjoint, unitary, and normal operators 10 1. Compact Operators Definition Definition Definition Definition			Min 15

, г			1
	11 Spect al Theory (15 Hours)		
	 Spectral Theory of Bounded Operators Spectrum of an operator. 		
	 12 1. Spectral Theorems Spectral Theorems 	12 .t	Min 15
	13 1. Unbounded Operators • Basic concepts and definitions. • Closed operators and the closed graph theorem.		
	 Spectral properties of unbounded operators. 		
V			
	Unit 5: Advanced Topics and Applications (15 Hours)		
	 Weak Topologies and Reflexivity Weak and weak* topologies. Reflexivity in normed spaces. Fixed Point Theorems Banach fixed-point theorem. 		
	Sobolev spaces and their properties	12	

Ref	erences:	
[1]	B. V. Limaye: Functional Analysis, New Age International	
Ltd,	New Delhi, 1996.	
[2]	G. Bachman and L. Narici: Functional Analysis; Academic	
Pres	s, NY; 1970	
[3]	J. B. Conway: Functional Analysis; Narosa Pub House, New	
Dell	ni; 1978	
[4]	J. Dieudonne: Foundations of Modern analysis; Academic	
Pres	s; 1969	
[5]	W. Dunford and J. Schwartz: Linear Operators - Part 1:	
Gen	eral	
The	ory; John Wiley & Sons; 1958	
[6]	Kolmogorov and S.V. Fomin: Elements of the Theory of	
Fun	ctions and Functional Analysis	
	English translation); Graylock Press, Rochaster NY; 1972	

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	1	1	-	3	-	3
CO 2	3	2	1	2	3	1	1	-	3	-	2
CO 3	3	2	1	2	3	1	1	-	3	-	3
CO 4	3	2	1	2	3	1	1	-	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
--	---------------	------------	---------	------	---------------------------

CO 1	√	\checkmark	✓	~	✓
CO 2	~	~	\checkmark	\checkmark	✓
CO 3	\checkmark	\checkmark	\checkmark	~	✓

RESEARCH METHODOLOGY

Programme	B. Sc. Applied Mathematics Honours					
Course Code	AMA8CJ489	AMA8CJ489				
Course Title	RESEARCH METHO	DOLOGY IN MATHEM	ATICS			
Type of Course	Major					
Semester	VII					
Academic Level	400 - 499					
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours		
	4	4	-	60		
Pre-requisites	 Mathematical Logic Research Aptitude 	and necessary exposure to s	et theory.			
Course Summary	MAT8CJ489, "Research Methodology in Mathematics," is designed to equip students with the essential skills and knowledge required for conducting research in mathematics effectively. This course focuses on various aspects of mathematical research, including axiomatic set theory, writing mathematics, researching and presenting findings, and using LaTeX for mathematical typesetting. Additionally, students explore open-ended research topics, allowing them to delve into specific areas of interest within mathematics. Throughout the course, students engage with key texts and resources, enabling them to develop a comprehensive understanding of research methodologies in mathematics.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Set Theory and Mathematical Writing: Students will demonstrate proficiency in axiomatic set theory, including concepts such as relations, functions, and Peano axioms. Students will exhibit competence in mathematical writing.	An	F	Internal Examination/ Assignment/ End Sem examination

CO2	Research Skills and Presentation Techniques: Students will acquire research skills, including identifying research topics. Students will develop effective presentation techniques, giving talks.	С	Р	Internal examination/ Seminar/ Assignment/ End Sem
				examination

RESEARCH METHODOLOGY

Programme	B. Sc. Applied Mathematics Honours					
Course Code	AMA8CJ489	AMA8CJ489				
Course Title	RESEARCH METHO	DOLOGY IN MATHEM	ATICS			
Type of Course	Major					
Semester	VII					
Academic Level	400 - 499					
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours		
	4	4	-	60		
Pre-requisites	 Mathematical Logic Research Aptitude 	and necessary exposure to s	et theory.			
Course Summary	MAT8CJ489, "Research Methodology in Mathematics," is designed to equip students with the essential skills and knowledge required for conducting research in mathematics effectively. This course focuses on various aspects of mathematical research, including axiomatic set theory, writing mathematics, researching and presenting findings, and using LaTeX for mathematical typesetting. Additionally, students explore open-ended research topics, allowing them to delve into specific areas of interest within mathematics. Throughout the course, students engage with key texts and resources, enabling them to develop a comprehensive understanding of research methodologies in mathematics.					

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used

CO1	Set Theory and Mathematical Writing: Students will demonstrate proficiency in axiomatic set theory, including concepts such as relations, functions, and Peano axioms. Students will exhibit competence in mathematical writing.	An	F	Internal Examination/ Assignment/ End Sem examination			
CO2	Research Skills and Presentation Techniques: Students will acquire research skills, including identifying research topics. Students will develop effective presentation techniques, giving talks.	С	Р	Internal examination/ Seminar/ Assignment/ End Sem examination			
CO3	Mathematical typesetting: to use LaTeX to create and typeset documents. Beamer Presentations and PSTricks also included.	Ap	F	Internal Examination/S eminar/ Assignment/En d Sem examination			
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Text Book	 (1): Naive set theory: Paul R. Halmos, Courier Dover Publications, 2017. (2): A student's guide to the study, practice, and tools of modern mathematics, Donald Bindner and Martin Erickson. CRC Press, ISBN: 978-1-4398-4606-3 						
Module	Unit	Content	Hrs (48+12)	External Marks (70)			
Ι		12					

і]
	(Sections 1 to 12 from the Text 1.)		
	1: The axiom of extension		
	2: The axiom of specification		
	3: Unordered pairs		
	4: Unions and intersections		
	5: Complements and powers		
	6: Ordered pairs		
	7: Relations		
	8: Functions		
	9: Families		
	10: Inverses and composites		
	11: Numbers		
	12: The Peano axioms		
П	Writing Mathematics (Text 2)	12	
	Chapter 1: How to Learn Mathematics		
	(A quick review – not part of evaluation)		
	Chapter 2: How to Write Mathematics - 2.1:		
	What is the goal of mathematical writing?		
	2.2: General principles of mathematical writing		
	2.3: Writing mathematical sentences		
	2.4: Avoiding error		

Ш	2.7: The revision process Researching and Presenting (Text 2)		
	2.5: Writing mathematical solutions and proofs2.6: Writing longer mathematical works		

Chapter 3: How to Research Mathematics -3.1: What is mathematical research?3.2: Finding a research topic3.3: General advice3.4: Taking basic steps3.5: Fixing common problems3.6: Using computer resources3.7: Practicing good mathematical judgmentChapter 4: How to Present Mathematics - 4.1:Why give a presentation of mathematics?4.2: Preparing your talk4.3: DOs and DON'Ts4.4: Using technology4.5: Answering questions4.6: Publishing your research
 3.2: Finding a research topic 3.3: General advice 3.4: Taking basic steps 3.5: Fixing common problems 3.6: Using computer resources 3.7: Practicing good mathematical judgment Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 3.3: General advice 3.4: Taking basic steps 3.5: Fixing common problems 3.6: Using computer resources 3.7: Practicing good mathematical judgment Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 3.4: Taking basic steps 3.5: Fixing common problems 3.6: Using computer resources 3.7: Practicing good mathematical judgment Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 3.5: Fixing common problems 3.6: Using computer resources 3.7: Practicing good mathematical judgment Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 3.6: Using computer resources 3.7: Practicing good mathematical judgment Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 3.7: Practicing good mathematical judgment Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
Chapter 4: How to Present Mathematics - 4.1: Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
Why give a presentation of mathematics? 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 4.2: Preparing your talk 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
 4.3: DOs and DON'Ts 4.4: Using technology 4.5: Answering questions
4.4: Using technology4.5: Answering questions
4.5: Answering questions
4.6: Publishing your research
IV LATEX 12
(Text 2)
LaTeX
9.4 How to create and typeset a simple LATEX document
9.5 How to add basic information to your document
9.6 How to do elementary mathematical typesetting
9.7 How to do advanced mathematical typesetting
9.8 How to use graphics
PsTricks

			
	10.1 What is PSTricks?		
	10.2 How to make simple pictures		
	10.3 How to plot functions		
	10.4 How to make pictures with nodes		
	Beamer		
	11.1 What is Beamer?		
	11.2 How to think in terms of frames		
	11.3 How to set up a Beamer document		
	11.4 How to enhance a Beamer presentation		
V	OPEN ENDED	12	
	(General Mathematical Research)		
	Lecturer's choices from the following		
	Reference 1 (Princeton Companion), Section 1.4: General Goals of Mathematical Research, p.48 to 78.		
	1. Solving Equations		
	2. Classifying		
	3. Generalizing		
	4. Discovering Patterns		
	 5. Explaining Apparent Coincidences 6. Counting and Measuring 		
	6. Counting and Measuring7. Determining Whether Different Mathematical Properties are Compatible		
	 8. Working with Arguments that are not Fully Rigorous 		
	9. Finding Explicit Proofs and Algorithms 10. What do you find in a Mathematical Paper?		
	Reference 2 (Math Unlimited), any chapters of the lecturer's choices.		
	Reference 3 (Krantz, Mathematical Writing), any topics of lecturer's choice.		

Reference	1. The Princeton companion to mathematics, Timothy Gowers, Ed., Princeton
	University Press, 2008, ISBN ISBN 978-0-691-11880-2.
	2. Math Unlimited, Essays in Mathematics, Editors: R. Sujatha, H N Ramaswamy, C
	S Yogananda, CRC Press, 2012, ISBN: 978-1-57808-704-4.
	3. A Primer of Mathematical Writing, Steven G. Krantz, 2nd Ed., 2017, ISBN
	9781470436582.

11	0										
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	1	2	3	2	3	2	3	1	2
CO 2	1	2	0	3	3	3	3	2	3	1	3
CO 3	0	1	3	1	2	2	3	3	2	1	2

CorrelationLevels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

	Assignment/ Seminar
	Internal Exam
	🛛 Viva
	Final Exam (70%)

		11 0		
	Internal Exam	Assignment	Seminar	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark

MULTI-DISCIPLINARY COURSES (MDC)

Programme	B. Sc. Mathematics Honours					
Course Code	MAT1FM105(1)					
Course Title	MATRICES AND	MATRICES AND BASICS OF PROBABILITY THEORY				
Type of Course	MDC					
Semester	Ι					
Academic Level	100 - 199					
Course Details	Credit Lecture/Tutorial Practical per Total H per week week					
	3	3	-	45		
Pre-requisites	Basic Arithmet	ic and Computational Skill				
Course Summary	The course "Matrices and Basics of Probability Theory" provides students with a comprehensive understanding of two fundamental mathematical concepts: matrices and probability. The syllabus begins with a focus on the algebra of matrices, covering operations such as addition, subtraction, multiplication, determinants, and inverses, followed by applications in solving systems of equations. Transitioning to probability theory, students delve into basic concepts, conditional probability, the addition and multiplication rules, and various counting methods. Additionally, the course introduces basic statistics, including frequency distributions, measures of central tendency and variation, and measures of position.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the concepts of matrices and determinants.	U	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam			
CO2	Apply matrix theory to solve systems of equations.	Ap	Р	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam			
CO3	Understand concepts like measures of central tendency, measures of variation, measures of position and probability.	U	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam			
# - F	- Remember (R), Onderstand (O), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						

Detailed Syllabus:

Texts:

1. John Bird, Bird's Higher Engineering Mathematics 9/e, Routledge, ISBN: 978-036764373-7, 2021.

2. Ron Larson & Betsy Farber, Elementary Statistics, Picturing the World 6/e, Pearson Education, ISBN: 978-0-321-91121-6, 2015.

Module	Unit	Content		Ext. Marks (50)
I		Algebra of Matrices (from text 1)		
	1	Section 20.1 - Matrix notation		
	2	Section 20.2 - Addition, subtraction and multiplication of matrices	9	Min 10
	3	Section 20.3 to 20.4 - The unit matrix, The determinant of a 2 by 2 matrix.		

	4	Section 20.5 - The inverse or reciprocal of a 2 by 2 matrix.		
	5	Section 20.6 - The determinant of a 3 by 3 matrix		
	6	Section 20.7 - The inverse or reciprocal of a 3 by 3 matrix		
II	System of Equations From Text 1			
	7	Section 21.1 - Solution of simultaneous equations by matrices		
	8	Section 21.2 - Solution of simultaneous equations by determinants	9	Min 10
	9	Section 21.3 - Solution of simultaneous equations using Cramer's rule		

	10	Section 21.4 - Solution of simultaneous equations using the Gaussian elimination method.		
III		Basic Statistics From Text 2		
	11	Section 1.1 to 1.2 - An Overview of Statistics, Data Classification		
	12	Section 2.1 - Frequency Distributions and their Graphs	9	Min 10
	13	Section 2.3 - Measures of Central Tendency		
	14	Section 2.4 - Measures of Variation		
	15	Section 2.5 - Measures of Position		
IV		Basics of Probability (from text 2)		
	16	Section 3.1 - Basic Concepts of Probability and Counting.	9	Min 10

	17	Section 3.2 - Conditional Probability and the Multiplication Rule.				
	18	Section 3.3 - The Addition Rule.				
	19	Section 3.4 - Additional topics in probability and counting.				
V		Open Ended	9			
	Data Collection and Experimental Design, More Graphs and Displays (for instance refer sections from Text 2: 1.3 and 2.2)					
Reference	es:					
1. Ad	lvanced	engineering mathematics, 10/e, Erwin Kreyszig, Wil	ey, 2011.			
	2. Introduction to Linear Algebra with Applications, Jim DeFranza and Daniel Gagliardi, Waveland Press, 2015.					
3. Ele	3. Elementary Statistics, 13/e, Mario F. Triola, Pearson Education, 2018.					
4. Elementary Statistics, 8/e, Neil A. Weiss, Pearson Education, 2012.						

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	0	3	1	3	2	2	1	2
CO 2	3	0	3	1	3	2	3	1	2
CO 3	3	0	3	1	2	2	3	1	3

CorrelationLevels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	√	√	\checkmark
CO 2	√	\checkmark	√	√	√
CO 3	\checkmark	\checkmark	\checkmark	✓	\checkmark

Programme	B. Sc. Applied Mat	B. Sc. Applied Mathematics Honours				
Course Code	AMA2FM106(1)					
Course Title	GRAPH THEOR	Y AND LPP.				
Type of Course	MDC					
Semester	II	II				
Academic Level	100 - 199					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	3 3 - 45					
Pre-requisites	Basic Arithmetic and Geometry.					

Course	The course "Graph Theory and Linear Programming" introduces
Summary	fundamental concepts in graph theory focusing initially on graph definitions, properties, and structures such as vertex degrees, subgraphs, paths, and cycles. The discussion extends to trees, bridges, spanning trees, cut vertices, and connectivity, emphasizing essential properties and theorems while proofs for brevity. Transitioning to linear programming, the course employs graphical methods for solving linear inequalities and
	optimization problems, progressing to the simplex method for more complex maximization and minimization problems, including duality and nonstandard scenarios. Additionally, the syllabus offers open-ended exploration into graph modeling, matrix representations, and connector problems.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Understand and apply the fundamental concepts in graph theory.	U	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam		
CO2	Analyse properties of graphs and trees.	An	Р	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam		
CO3	Solve linear programming problems by geometrically and Simplex method.	Ap	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam		
- Fact						

Detailed Syllabus:

Texts:

1. John Clark & Derek Allan Holton, A First Look at Graph Theory: Allied Publishers, First

Indian Reprint 1995.

2. Margaret L. Lial, Raymond N, Finite Mathematics and Calculus with Applications 9/e, Greenwell & Nathan P. Ritchey Pearson Education, Inc, ISBN 0-321-74908-1, 2012.

Module			Hrs	Ext. Marks
			(36	
	Unit	Content	+9)	(50)

Ι		Basics of Graph Theory (from text 1)			
	1	Section 1.1 - Definition of a graph.			
	2	Section 1.3 - More definitions.	9	Min 10	
	3	Section 1.4 - Vertex degrees.			
	4	Section 1.5 - Sub Graphs.			
	5				
II		Basics of Graph Theory From Text 1			
	6				
	7		Min 10		
	8	9			
	9				
	10	Section 2.6 - Cut Vertices and Connectivity (Theorem 2.20 and Theorem 2.21 are statements only).			
III		Linear Programming - The Graphical Method From Text 2			
	11 Section 3.1 - Graphing Linear Inequalities.		9	Min 10	
	¹² Section 3.2 - Solving Linear Programming Problems Graphically; up to and including Example 2.				
	13	Section 3.2 - Solving Linear Programming Problems Graphically contd.			
	14	Section 3.3 - Applications of Linear Programming; up to and including Example 2.			

	15	Section 3.3 - Applications of Linear Programming contd.		
IV		Linear Programming - The Simplex Method (from text 2)		
	16	9	Min 10	
	17			
	18			
	19	Section 4.4- Nonstandard Problems.		
V		Open Ended		
	Graph proble Text	9		
Referenc	es:		1	
1. Int	roducti	on to Graph Theory, 4th ed., R.J. Wilson, LPE, Pearson Ed	ducation	n, 1996.
2. Gra	aph Th	eory with Applications, J .A. Bondy & U.S.R. Murty, Nort	th-Holla	and,1982
		ogramming: Foundations and Extensions, 2/e, Robert J. Va siness Media LLC, 2001.	nderbe	i, Springer
		uction to Linear Programming and Game Theory (3/e), Pa John Wiley and Sons, 2008.	ul R. T	hie and G.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	1	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

Mapping of COs to A	ssessment Rubrics:
---------------------	--------------------

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	\checkmark	√	√	✓
CO 2	√	\checkmark	√	√	✓
CO 3	\checkmark	\checkmark	\checkmark	✓	\checkmark

Programme	B. Sc.Appled Math	B. Sc.Appled Mathematics Honours							
Course Code	AMA1FM105(2)								
Course Title	MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART I								
Type of Course	MDC								
Semester	Ι								
Academic Level	100 - 199								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	3	3	-	45					
Pre-requisites	Basic Arithmetic an	nd Computational Skill							
Course Summary	problem-solving sl ranging from fund fractions, and roots	igned to equip students w kills required for competit amental arithmetic operations to more advanced concept e calculations, and problem	tive exams. It ons such as nu ts like financial	covers topics mber systems, mathematics,					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply mathematical methods to solve problems	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply numerical skills in competitive examinations	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Manage time in competitive examinations.	С	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
- Factu	nember (R), Understand (U), A al Knowledge(F) Conceptual edge (M)			

Detailed Syllabus:

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
Ι		Fundamentals of Arithmetic		
	1	Number System		
	2	Number Series	9	Min 10
	3	Simple and Decimal Fractions		
	4	HCF and LCM		
	5	Square root and Cube root		
		Basic Arithmetic Operations		
	6	Simplification		

	8 9 10 11 12 13 14 15	Ratio and Proportion Problems based on ages Percentage Financial Mathematics Profit and Loss Discount Simple Interest Compound Interest	9	Min 10	
	10 11 12 13 14	Percentage Financial Mathematics Profit and Loss Discount Simple Interest Compound Interest	9	Min 10	
	11 12 13 14	Financial Mathematics Profit and Loss Discount Simple Interest Compound Interest	9	Min 10	
1	12 13 14	Profit and Loss Discount Simple Interest Compound Interest	9	Min 10	
1	12 13 14	Discount Simple Interest Compound Interest	9	Min 10	
1	13 14	Simple Interest Compound Interest	9	Min 10	
1	14	Compound Interest			
1					
	15	Work and Time			
		Work and Time			
IV		Time, Speed, and Distance			
1	16	Speed, Time and Distance	9		
1	17	Problems based on trains		Min 10	
1	18	Boats and Streams			
1	19	Clock and Calendar			
V		Open Ended	9		
М	/ixtu	re or Allegation, Partnership, Pipes and Cisterns			
References : 2018 (Primar		ast Track Objective Arithmetic, Rajesh Verma, Arihant Pr	ublication	s India limite	
	-	hmetic for Competitive Examinations, Dinesh Khattar, P	Pearson Ed	ducation, 202	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	0	3	2	3	2	3	1	2

CO 2	2	0	3	1	3	2	3	1	2
CO 3	2	0	2	2	2	2	2	1	2

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	√	\checkmark	✓
CO 2	\checkmark	\checkmark	~	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	√	\checkmark

Programme	B. Sc. Applied Mathematics Honours						
Course Code	AMA2FM106(2)						
Course Title	MATHEMATICS	FOR COMPETITIVE E	XAMINATIO	NS - PART II			
Type of Course	MDC	MDC					
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	3	3	-	45			
Pre-requisites	Basic Arithmetic and Computational Skill						

Course	The course "Mathematics for Competitive Examinations - Part II" is designed
Summary	to prepare students for competitive exams by focusing on various reasoning
	and problem-solving skills. It covers a range of topics including non-verbal
	reasoning, verbal reasoning, spatial reasoning, and abstract reasoning, each
	module addressing different aspects of these skill sets.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used	
CO1	Apply mathematical methods to solve problems	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam	
CO2	Understand the basic concepts of logical reasoning Skills	U	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam	
CO3	CO3 Manage time in competitive examinations C M Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Detailed Syllabus:

Module	Unit	Content	Hrs (36+9)	Ex Marks (50)
		Non-Verbal Reasoning		
Ι	1	Similarity of Pairs		
	2	What come Next	9	Min 10
	3	Odd One out		
	4	Coding and Decoding		

	5	Ranking Test	1	
II		Reasoning Contd.		
	6	Blood relations	_	
	7	Blood relations Contd.	9	Min 10
	8	Direction Sense Test		
	9	Direction Sense Test contd.		
	10	Logical Venn Diagram	1	
III		Spatial Reasoning		
	11	Figure analogy	9	
	12 Figure series			Min 10
	13	Figure Classification		
	14	Mirror and Water Images		
	15	Counting of figures		
IV		Abstract Reasoning		
	16	Cube and Dice		
	17	Logical and Analytical Reasoning	9	Min 10
	18	Geometry mensuration		
	19	Data Interpretation	1	
V		Open Ended		
		abet and Number Sequence Test, Paper folding and cutting	9	

References:

1. A Fast Track Course in MENTAL ABILITY, Amogh Goel, Arihant Publications India limited, 2016. (Primary Reference).

2. The Mental Ability, Logical Reasoning & Problem-Solving Compendium for IAS Prelims General Studies Paper 2 & State PSC Exams, Disha Experts, Disha Publications, 2018. 3. The Pearson Guide to Verbal Ability and Logical Reasoning for the CAT, Nishit K. Sinha, Pearson Education, 2014.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	2	1	2	0	1	1	0
CO 2	2	0	2	1	2	0	1	1	0
CO 3	0	1	2	1	2	0	1	1	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Assessment Rubrics:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	\checkmark	√	√	~
CO 2	√	✓	√	√	✓
CO 3	√	✓	\checkmark	√	√

SKILL ENHANCEMENT COURSES (SEC)

Programme	B. Sc. Applied Mathematics Honours
Course Title	MATHEMATICAL TYPE SETTING SYSTEM - LATEX
Course Code	AMA5FS112

Type of Course	SEC								
Semester	V								
Academic Level	300-399	300-399							
Course Details	Credit	Credit Lecture/Tutorial per Practical per Total Hours week week							
	3	3	-	45					
Pre-requisites	1. Fundamental Ma	thematics Concepts							
Course Summary	typesetting, graph presentation and	ver topics such as documentics and tables, bibliograpunderstanding the Indianting Sanskrit or Hindi or N	ohy managem 1 language tr	ent, beamer ransliteration					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Preparing a LaTex document with title page including contents, references and index	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam
CO2	To Display documents with bullets, numbering and aligning or ordering and adding rows and tables	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam
CO3	Use mathematical typesetting and equation environments to create professional looking equations and mathematical notation	U	F	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam
Factua	nember (R), Understand (U), Apply (A l Knowledge(F) Conceptual Knowledg edge (M)			

Detailed Syllabus:

Textbook	Text 1	Text 1: LATEX TUTORIAL, A PRIMER by Indian TEX Users Group, Edited									
	by E. I	Krishnan, 2003.									
	Text 2	: George Gratzer, More Math Into LaTeX-Springer 201	6 (5 th Ec	lition),							
Module	Unit	Content	Hrs	Ex.							
				Marks							
			(36+ 9)	(50)							
Ι		Getting Started with LaTeX (Text-1)	"	(30)							
	1	The basics- Tutorial I	8	M: 10							
	2	The documents – Tutorial II		Min 10							
	3	Bibliographic Database- Tutorial III & IV									
	4	Table of contents and Index- Tutorial V(Omit glossary)									
II											
	5	Displayed Text – Tutorial VI	6	Min 10							
	6	Rows and columns – Tutorial VII									
	7	Tables – Tutorial VII .2									
III		Typesetting Mathematics									
	8	Basic Mathematical equation- Tutorial VIII.1, VIII.2									
	9	Groups of Equations and numbering – Tutorial VIII.3	10	Min 10							
	10	Matrices, dots, delimiters and affixing symbolsTutorial VIII.4									
	11	Operators, Equations, Symbols, notations, Greek letters etc. Tutorial VIII.5, VIII.6, VIII.7, VIII.8(In VIII.8 focus only on usual symbols, Greek letters, operations etc. commonly used in mathematics)									
IV		Theorems, figures, Cross references and Presentation(Text-1 and 2)									
	12	Theorem in Latex – Tutorial IX.1									

	13	The AMS theorem package- Tutorial IX.2 (Omit IX.2.2, IX.2.3)	12	Min 10
	14	Boxes – Tutorial X (Section X.1, X.2 Only)		
	15	Floating Images- Tutorial XI (Section XI.I.I, XI.I.2 and XI.I.5 Only)		
	16	Cross Reference – Tutorial XII (Section XII.1, XII.2 Only)		
	17	Footnotes- Tutorial XIII (Section XIII.1 Only)		
	18	Presentation – Text 2, Section 12.1 to 12.2.4		
	19	Presentation – Text 2, Section 12.2.6 to 12.2.9 (Omit 12.2.5 and 12.2.7)		
V		Open Ended	9	
	1	Installation of LaTeX		
	2	Familiarising Overleaf Platform		
	3	Write a chapter in a book that you are studying in any semester having mathematical symbol theorems and figures.		
	4	Create Slides with beamers and posters		
	5	Transliteration symbols with Illustrative examples of the Indian Languages, such as Sanskrit, Hindi (Devanagari) and Malayalam.		

References:

- Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX 2ε (Online Link:- <u>The Not So Short Introduction to LaTeX</u> (oetiker.ch))
- 2) Harvey J. Greenberg, A simplified introduction to LaTeX (Online version)
- Leslie Lamport (second edition. Addison Weley, 1994) LaTeX, a Dcument Preparation System.
- 4) Donald Knuth (Addison-Wesley, 1984), The TeX book 5) Frank Mittelbach and Michel Goossens (second edition, A 6) ddison-Wesley, 2004).

Leve	el C	orrelati	on					L	Assignm						
-	Ν	il			 Internal Exam Viva 										
1	S	lightly / I	Low						Final	Exam (
2	M	loderate	/ Medium												
3		Substar Hig													
	PSO1	PSO2	PSO3	PS	504	PSO5	PSC	06	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1		0	1	1	l	2	2	1	0	2	3	0
CO 2	2	3	1		0	1	1	l	1	3	1	0	2	3	0
CO 3	3	2	1		0	1	1	l	2	1	1	0	2	2	0
Mappi	ing of C	COs to	Assessm	ent	Rub	rics:		ĩ							
	Internal	Exam	Assignme	ent	Semin	nar V	<i>l</i> iva	En	d Semest	er Exam	inations				
CO 1	~	,	√		√		√			√					
CO 2	~	,	\checkmark		√		√			√					
CO 3	~	,	\checkmark		\checkmark		√			\checkmark					

Correlation Levels: Assessment Rubrics:

Program	mme	B. Sc. Applied Math	nematics Hon	ours							
Course	Code	AMA6FS113									
Course	Title	DATA SCIENCE WITH PYTHON									
Type of	f Course	e SEC									
Semest	er	VI									
Acader	nic Level	300 - 399									
Course Details		Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours					
		3	3	-	0	60					
Pre-req	uisites	A basic course in F looping, conditional modules.		-							
Course Summa		This course is an ad Python. It will enab specific focus on ho in practical situation	ble the studer w to use ther	ts to learn mo n to analyse d	ore features of ata and arrive	Python with a at conclusions					
Course	Outcomes	s (CO):									
CO	(CO Statement	Cognitive Level*	Knowledg Category#		n Tools used					
CO1 Learn to rearrange and manipulate various data structures in Python to make it more meaningful			U	F	Assignmen	Internal Exam/ Assignments / End Semester Examination					
CO2		nd fundamentals of from a real life point	U	F	Internal Exam/ Assignments / Quiz / End						

Ap

Semester Examination

Internal Exam / Quiz /

End Semester

Examination

С

CO2

CO3

of view

Learn how to visualise data

for clearer understanding of

practical situations

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Note : Python IDLE (with necessary modules like pandas, scipy), Anaconda/Spyder package, Jupyter notebook interface or Google colab (free to use) interface, Pydroid 3 for android (along with Pydroid repository plugin) can be used for training purposes. Python version 3.10 or above should be used to avoid errors with some of the functionalities we discuss in the course.

Textbook	1	Mastering Python for Data Science, Samir Madhavar	n, PACK	Г					
		Publishing, 2015							
	2	 Data Science from Scratch, Second Edition ,Joel Grus, O'Reilly, 2019 							
Module			Hrs (36+9)	Ext. Marks					
	Unit	Content		(50)					
Ι	Pytł	on Tools for Handling and Manipulating Data							
		(Text 2, Chapter 2)							
	1	Exceptions, Lists.							
	2	Tuples, Dictionaries.	8	Min 10					
	3	Counters, Sets, List Comprehensions,							
	4	Truthiness, Automated Testing and assert Iterables and Generators							
	5	Randomness, Regular Expressions, zip and Argument Unpacking							
II	Mor	re Tools for Data Handling – Numpy and Pandas	8	Min 10					
		(Text 1, Chapter 1)							

6	NumPy : Mathematical operations, Array subtraction, squaring an array, A trigonometric function performed on the array, Conditional operations.	
7	NumPy : Matrix multiplication, Indexing and slicing, Shape manipulation.	

	8 9 10 11	 Pandas : Inserting and exporting data, CSV, Data cleansing, Checking the missing data. Pandas : Filling the missing data, String operations, Merging data Data operations: Aggregation operations, Joins, The inner join Data operations: The left outer join, The full outer join, The groupby function 		
III		Inferential Statistics		
		(Text 1, Chapter 2)		
	12	Various forms of distribution, A normal distribution, A normal distribution from a binomial distribution.	12	Min 10
	13	A Poisson distribution, A Bernoulli distribution.		
	14	A z-score, A p-value, One-tailed and two-tailed tests.		
	15	Type 1 and Type 2 errors, confidence interval.		
	16	Correlation, Z-test vs T-test, The F distribution.		
	17	The chi-square distribution, Chi-square for the goodness of fit, The chi-square test of independence, ANOVA.		
IV		Applying the Theory to Problems		
		(Text 1, Chapter 3)		
	18	What is data mining? Presenting an analysis.	8	Min 10

	19	Studying the Titanic – with all the required analysis		
V		Open Ended	10	
		Visualizing Data		
		(Text 1, Chapter 4)		
	1	Making Sense of Data through Advanced Visualization - Controlling the line properties of a chart		
	2	Using keyword arguments, Using the setter methods, Using the setp() command.		
	3	Creating multiple plots, Playing with text, Styling your plots.		
	4	Box plots, Heatmaps, Scatter plots with histograms.		
	5	A scatter plot matrix, Area plots.		
References	1	Thomas Nield, Essential Math for Data Science - Ta Your Data with Fundamental Linear Algebra, Proba Statistics, O'Reilly Media, 2022		
	2	Wes McKinney, Python for Data Analysis_ Data Wr pandas, NumPy, and Jupyter-O'Reilly Media, Third		
	3	Fabio Nelli, Python Data Analytics- With Pandas, M Matplotlib, Apress, Second Edition, 2018	NumPy, and	
	4	https://www.kaggle.com/datasets/yasserh/titanic-dat	taset	
	5	https://www.w3schools.com/datascience/ds_python	.asp	
	6	https://realpython.com/python-for-data-analysis/		
	7	https://www.geeksforgeeks.org/data-science-with-py	ython-tutorial/	
	8	https://learn.microsoft.com/en-		
		us/training/modules/exploreanalyzedata-with-pythor	n/1-introductio	n
	9	https://onlinecourses.nptel.ac.in/noc24_cs54/preview	W	
	10	https://onlinecourses.nptel.ac.in/noc20_cs46/preview derstanding of the topics given in Module II, addition		

Note: For detailed understanding of the topics given in Module II, additional reference 1 can also be used, though it is not very essential.

Roadmap:

Being a practice-oriented course, the teachers may introduce the students to more problems so as to familiarize them with the tools in which they have been trained

through this course. Many good examples on how to use these in real life situations can be found in Chapter 13 of additional reference 2 and the URLs provided in the additional references section.

		PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	PSO 1										
CO 1	2	3	3	1	3	2	3	3	1	1	1
CO 2	3	2	3	2	3	2	1	1	1	1	1
CO 3	3	2	2	1	3	1	3	3	1	-	1

Mapping of COs with PSOs and POs :

		Assignment	Quiz	
	Internal Exam			End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark		\checkmark	\checkmark

CO 3	\checkmark	\checkmark	

Correlation Levels:

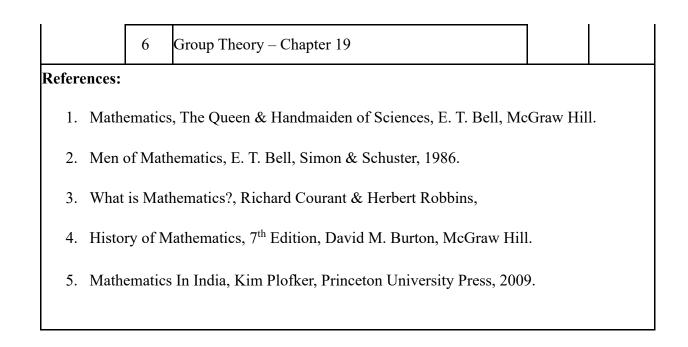
Assessment Rubrics:

Level	Correla	ation		• Internal I	Txam				
-	Nil		Assignment						
1	Slightly	/ Low		•	Quiz				
2	Modera	te / Medium	• End Se	emester Examina	tions				
3 Substantial / High			ALUE-ADDED COURS	ES (VAC)					
Program	me	B. Sc. Applie	ed Mathematics Honours						
Course C	Code	AMA3FV10	9(1)						
Course 7	Title	HISTORY	OF MATHEMATICS						
Type of	Course	VAC							
Semester	r	III							
Academi	ic Level	200 - 299							
Course I	Details	Credit	Lecture/Tutorial per Practi week per we		Total Hours				
			3 -		45				
Pre-requ	isites	Aptitude for	Mathematics and its History.						
Course Summar	Course The course goes into the philosophy of mathematics, modern axiom methods, controversies in set theory around axiom of choice, its implications and various philosophical alternative approaches to the foundations of mathematics.								

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used

CO1	Analyse Key Mathematical	An	С	Internal				
	Theorems and Concepts from			Exam/				
	Ancient to Early Modern Times			Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
CO2	Evaluate and Compare Methods of Addressing Infinity and Large Cardinal Numbers	Ε	Р	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam				
CO3	Ensure students gain a comprehensive understanding of the historical development and foundational concepts of mathematics	An	С	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam				
Factua	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							


Detailed Syllabus:

Textbook		Mathematics & Its History, 3 rd Edition, John Stillwell, Springer (2010) ISBN: 978-1-4419-6052-8.					
Module	Module Unit Content		Hrs (36+9)	Ext. Marks			
				(50)			
Ι		Ancient Origins & Foundations					
	Quick	Review of Ancient Mathematics					
	1	Chapter 1: Pythagoras Theorem					
	2	2 Chapter 2: Greek Geometry					
	3 Chapter 3: Greek Number Theory		9				
	Infini		Min 10				

	4 5	Section 4.1, 4.2-Fear of Infinity, Eudoxus' Theory of Proportions Section – 4.3, 4.4-The Method of Exhaustion, Area of a Parabolic Segment		
	Sets &	& Logic – Chapter 24		
	6	Sections 24.1, 24.2, 24.4- Sets, Ordinals, Axiom of Choice & Large Cardinals		
	7 Section 24.3- Measure			
	8	Section 24.5-The Diagonal Argument		
	Biogra	phical Notes: Pythagoras, Euclid, Diophantus, Archimedes		
II		Calculus – Chapter 9		
	9	Section 9.1, 9.2-What is Calculus, Early Results on Areas & Volumes	9	Min 10
	10	Section 9.3-Maxima, Minima & Tangents		
	11	Section 9.4-The Arithemetica Infinitorum of Wallis		
	12	Section 9.5-Newton's Calculus of Series		
	13	Section 9.6-The Calculus of Leibnitz		

	Biographical Notes: Wallis, Newton & Leibnitz		
III	Algebraic Equations & Numbers		
	Polynomial Equations – Chapter 6		
	14 Section 6.1, 6.2- Algebra, Linear Equations & Elimination		
	15 Section 6.3, 6.4 Quadratic Equations, Quadratic Irrationals	9	Min 10

	16			
	17	Section 6.6-Angle Division		
	18	Section 6.7-Higher Degree Equations		
	Biogra	aphical Notes: Tartaglia, Cardano & Viete		
	Comp	olex Numbers – Chapter 14		
	19	Section 14.1, 14.2, 14.3- Impossible Numbers, Quadratic & Cubic Equations		
	20	Section 14.4- Wallis' Attempt at Geometric Representation		
	21	Section 14.5, 14.6- The Fundamental Theorem of Algebra, The Proofs of d'Alembert & Gauss		
	Biogra	aphical Notes: d'Alembert		
IV		Topology – Chapter 22		
	22	Section 22.1, 22.2- Geometry & Topology, Polyhedron Formulas of Descartes & Euler		
	23	Section 22.3-The Classification of Surfaces		
	24	Section 22.4- Descartes & Gauss-Bonnet	10	Min 10
	25	Section Euler 22.5-Characteristic & Curvature		
	26	Section 22.7, 22.8- The Fundamental Group, The Poincare Conjecture		
	Biogra	phical Notes: Poincare		
V		Open Ended Module	9	
	1	Hypercomplex Numbers – Chapter 20		
	2	Number Theory in Asia – Chapter 5		
	3	Mechanics – Chapter 13		
	4	Complex Numbers & Functions – Chapter 16		
	5	Non-Euclidean Geometry – Chapter 18		

Mapping of COs with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

:

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	√	\checkmark

CO 2	\checkmark	\checkmark	\checkmark	✓	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\	\checkmark

Programme	B. Sc. Applied Mat	B. Sc. Applied Mathematics Honours				
Course Code	AMA3FV109(2)					
Course Title	COMPUTATION	AL LOGIC				
Type of Course	VAC					
Semester	III	III				
Academic Level	200-299					
Course Details	Credit Lecture/Tutorial per Practical Total Ho week per week					
	3 3 - 45					
Pre-requisites	Nil					

Course	The course will cover the basics of propositional and predicate logic,
Summary	Compactness, and the Resolution Theory.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Determine the Satisfiability of a Propositional Formula Set.	Ap	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam			
CO2	Analyse Theorems of Propositional Logic	Ap	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam			
CO5	Remember Proofs of Major Theorems of Logic	An	М	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam			
Factual I	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus:

Text	Logic for	r Computer Scientists, U. Schoning, Birkhauser, 2008	(Reprint).	
book				
Module			Hrs	Ext.
			(45 =	Marks
	Unit	Content	(15 36 +9)	(50)
Ι	<u>sit</u>	ional Logic (Chapter 1 of Text Book).		
	1 _			
		Syntax and Semantics, Truth Tables, Satisfiability and Validity.	10	Min 10

1]	
	2	Equivalence and Normal Forms, Substitution Theorem		
	3	DNF and CNF forms		
	4	Horn Formulas,		
	5	Compactness Theorem for Propositional Calculus		
	6	Resolution Theorem and Resolution Algorithm		
II	Introd	luction to Predicate Logic: Section 2.1, 2.2,		
	Subsec	ction on Mathematical Theories of Section 2.3		
	7	Syntax of Predicate Logic	9	Min 10
	8	Semantics - Structures and Models, Satisfiability and Validity		
	9	Equivalence of formulas - Substitution, Variable Renaming.		
	10	Skolem Normal Form		
	11	Mathematical Theories - Axioms and Models.		
III	Herbr	and Theory for Predicate Logic: Section 2.4		
	12	Herbrand Universe and Structures		
	13	Herbrand Model and Satisfiability Theorem	9	Min 10
	14	Skolem Lowenheim Theorem		
	15	Herbrand Expansion and Godel-Herbrand-Skolem Theorem		
	16	Compactness and Herbrand's Theorem		
IV	Resolu	ition for Predicate Logic: Section 2.5		
	17	Ground Resolution and Resolvants	8	Min 10
	18	18 Ground Resolution Theorem		
	19	19 Robinson's Unification Theorem and Algorithm		
	20	Lifting Lemma		

	21	Resolution Theorem for Predicate Logic		
V	Logic	Programming	9	
	1	Unsolvability of Predicate Logic (Section 2.3 on Text Book)	-	
	2	SLD Resolution (Section 2.6 of Text Book)		
	3	Introduction to Logic Programming		
	4	Horn Clause Programs		
	5	Evaluation Strategies for Horn Clause Programs.		
Reference	ces:			

- 1. J. H. Gallier, Logic for Computer Science Foundations of Automatic Theorem Proving, Dower, 2015.
- 2. S. Reeves, M Clarke, Logic for Computer Science, Addition Wesley, 1990. coding

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assig	gnment/ S	eminar
	Interna	l Exam
	Π	Viva

□ Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	✓	✓
CO 2	~	√	√	√	√
CO 3	✓	V	√	~	\checkmark

Programme	B. Sc. Applied Mathematics Honours
Course Code	AMA4FV110(1)
Course Title	STATISTICS AND MATHEMATICS WITH R
Type of Course	VAC
Semester	IV

Academic Level	200-299			
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours
	3	3	-	45
Pre-requisites	 Basic School (+2) Basic Programming 			
Course Summary	understanding of R computation. The cur features, data storag explore graphical vis and functions, and c exercises and referer Murdoch, supplemen	Mathematics with R" cour programming for statistic riculum begins with an int ge, and manipulation tech ualization, programming c computational linear algebraces to relevant sections i ted by further reading ma udents with practical skill atical modeling.	al analysis an roduction to R nniques. Subse onstructs such ra. Each unit n the textbook terials for deep	d mathematical , covering basic equent modules as flow control offers hands-on c by Braun and per exploration.

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate Proficiency in Basic and Intermediate R Programming	Ap	Р	Internal Exam/ Seminar/Assignment / End Sem Exam
CO2	Create and Interpret Various Types of Graphs Using R	С	С	Internal Exam/ Seminar/Assignment / End Sem Exam
CO3	Apply Advanced Mathematical and Statistical Functions in R	Ар	Р	Internal Exam/ Seminar/Assignment / End Sem Exam
	nember (R), Understand (U), Apply tual Knowledge(F) Conceptual Know	· · · ·	,	

Knowledge (M)

Detailed Syllabus:

Textbook		t Course in Statistical Programming with och, Cambridge University Press, 3 rd Ed., 20		
Module	Unit	Content	Hrs (36+9)	External Marks (50)
Ι		Introduction to R		
	1	R Studio. R Command Line. R as calculator. Named Storage. Quitting R.		
	2	Basic Features of R.	12	Min 10
	3	Vectors in R.		
	4	Data Storage in R. Packages,		
	5	Libraries and Repositories.		
	6	Getting Help. Useful Features of R.		
	7	Data Frames, tibbles, and lists		
	8	Data Input and Output		
	Refere	nce: Chapter 2, Sections 1 to 10		
II		Graphics with R		
	9	Bar Charts and Dot Charts. Pie Charts.	4	
	10	Histograms. Box Plots. Scatter Plots.		Min 10
	11	Plotting from Data Frames. Quantiles. QQ Plots.		
	Refere	nce: Section 3.1.		
III		Programming in R		
	12	Flow Control. For Loop. Examples 4.1 to 4.4.		
	13	If Statement. Examples.	13	Min 10
	14	Eratosthenes Sieve.		

	15	While Loop. Examples. Newton's Method.		
	16	Repeat loop. Break and Next Statements. Examples and Exercises.		
	17	Functions.		
	18	General Programming Guidelines		
	Refere	ence: Chapter 4, Sections 1-4.		
IV		Computational Linear Algebra		
	21	Vectors and Matrices in R	7	Min 10
	12	Matrix Multiplication and Inversion		
	19	Eigenvalues and Eigenvectors		
	20	Singular Value Decomposition		
	Refere	ence: Sections 7.1, 7.2, 7.3, 7.4.1.		
V		OPEN ENDED	9	
	Sugge	stions:		
	Sectio	n 3.2 - 3.4: Higher Level Graphics with ggp	lot	
	Sectio	n 4.6: Debugging and Maintenance		
	Sectio	n 4.7: Efficient Algorithms.		
	Sectio	n 6.1: Monte Carlo, 6.2: Pseudo-Random N	umbers	
	Appen	dix A: Overview of Random Variables and I	Distributions	
	Sectio	n 6.3: Simulation of Random Variables		
	Sectio	n 8.3: Newton-Raphson		
	Sectio	n 8.5: Linear Programming		

Reference	1. Roger D. Peng, R Programming for Data Science, LeanPub, 2022, ISBN 9781365056826. https://bookdown.org/rdpeng/rprogdatascience/
	 Garrett Grolemund, Hands-On Programming with R, O'Reilly, 2014, ISBN 1449359019. https://rstudio-education.github.io/hopr/ Ruriko Yoshida, Linear Algebra and its Applications in R, Chapman and Hall, 2021, ISBN 9780367486846

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	2	2	2	2	2	1
CO 2	2	3	1	0	2	2	2	2	2	1	1
CO 3	1	1	3	2	2	2	2	2	2	1	1

Correlation Levels: Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar
 Internal Exam
 Viva
 Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	✓	✓
CO 2	√	√	~	√	✓
CO 3	√	√	√	✓	√

Programme	B. Sc. Applied	Mathematics Honours					
Course Code	AMA4FV110	AMA4FV110(2)					
Course Title	THE MATHE	THE MATHEMATICAL PRACTICES OF MEDIEVAL KERALA					
Type of Course	VAC	VAC					
Semester	IV						
Academic Level	200 - 299						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	3	3	-	45			
Pre-requisites	Mathematical	nental Mathematics Concepts operations, Plane Geometry. gence of series of numbers a		em,Basic			
Course Summary		2. Convergence of series of numbers and functions. This course familiarises students with the traditional Indian Mathematics practised in the Medieval Kerala School of Astronomy and Mathematics.					

Course Outcomes (CO):

CO	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used
CO1	Uncover the underlying fundamental principles of the traditional mathematics practised in medieval Kerala.	U	С	Seminar Presentation/ Group Tutorials
CO2	Appreciate the role of thought process and working rules in mathematics.	U	С	Seminar Presentation/ Group Tutorials
CO3	Appreciate the usage of infinite series in mathematical analysis.	U	С	Seminar Presentation/ Group Tutorials

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
 Metacognitive Knowledge (M)

Text Bo	ook	1 Lilovati of Rhoskaragarya Translated by K.S.Patwardhan, S.A.N.	aimpally	and
Ітлі Б	JOK	1. Lilavati of Bhaskaracarya Translated by K.S.Patwardhan, S.A.N S.L.Singh, Motilal Banarsidass Publishers, Delhi. 2006.	aimpany	anu
	l	 Ganita Yukti Bhasa of Jyesthadeva. Volume I. English Translati 	ion by K.	V.Sarma
	I	with explanatory notes by K.Ramasubramanian, M.D.Srinivas and	•	
	ا ـــــــ	Hindustan Book Company, 2008.	·	
	·,		Hours	Ext.
Module	Unit	Content	(36 +9)	Marks (50)
Ι			9	
	Meas	surement of sides and areas of triangles, quadrilaterals and circles.		14
	1	Computation of sides of a right triangle when one side is given.		
	2	Computation of area of triangles and quadrilaterals.		l
	3	Computation of the perpendicular below the intersection of diagonals.		
	4	Approximating the surface area and volume of spheres.		
	5	Computation of sides of polygons inscribed in a circle.		l
	6	Computation of the arcs and chords of circles.		
	-	ter 28 from Text I (Treatment based on English translations of Sanskrit		l
	verses	s in Lilavati).	1	ļ
II	D		9	12
	R i 7	ules concerned with Solids, Shadow of Gnomon and Pulverizer. Volume of Solids		14
	8		-	
		Volume of a heap of Grain Shadows of Gnomon.	-	
	9	Pulverization	-	l
	10 Chapt		-	l
	-	ters 29, 30, 31, 32 and 33 from Text I (Treatement based on English ations of Sanskrit verses in Lilavati).		
III		Circle and Circumference as in Yuktibhasa.	10	14
	11	Circumference of a circle approximated by regular polygons.		
	12	Circumference of a circle without calculating square roots.		l
	13	Circumference of a circle in terms of the hypotenuses.		l
	14	Summation of Series.		l
	15	Calculation of circumference.		l
	16	Conversion of the Rsine to Arc.		l
	Sectio	ons 6.1 to 6.6 of Chapter 6 from Text II.		
			8	
IV	<u> </u>	Sine and Cosine series as in Yuktibhasa.		10
ļ	17	Some technical terms and derivation of Rsines.		<u> </u>

	18	Computation of Rsines.		
	19	Computation of Jya and Sara by sankalita and accurate circumference.		
	Sectio	ons 7.1 to 7.6 of Chapter 7 from Text II.		
i			9	
V	Fro	m Ancient Mathematical Rules to Modern Computer Algorithms.		

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	2	1	0	2	3	0
CO 2	2	3	1	2	2	3	1	0	2	3	0
CO 3	2	2	2	2	2	1	1	0	2	2	0

Mapping of COs with PSOs and POs :

Correlation Levels: Assessment Rubrics:

	Level	Correlation	Assignment/ Seminar
	-	Nil	 Internal Exam Viva
	1	Slightly / Low	Final Exam (70%)
	2	Moderate / Medium	
	3	Substantial / High	
(Oj End	pen 20 led)	Decoding of imp from Lilavati (Ter	ortant Sanskrit verses discussed in Modules I and II xt I).
	2	Decoding of impo IV from Yuktibhas	rtant Sanskrit verses discussed in Modules III and sa (Text II).
	22	2 Conversion of se Computer Algorit	elected Rules discussed in Modules I to IV into hms.
	Re	elevant Topics from T	ext I, Text II and References.

References:

1. The Mathematics of India - Concepts, Methods, Connections. P.P.Divakaran, Hindustan Book Agency, New Delhi, 2018.

A Passage to Infinity - Medieval Indian Mathematics from Kerala and its Impact. George Ghevarghese
 Joseph, Sage Publications, New Delhi, 2009.

3. On an Untapped Source of Medieval Keralese Mathematics. C.T.Rajagopal and M.S.Rangachari, Archive for the History of Exact Sciences, 35 (2), (1986), 91 - 99.

4. Yukthibhasha. Rama Varma Maru Thampuran and A.R.Akhileswara Iyer (Editors)}, Mangalodayam Press, Trichur 1948.

 Tantrasangraha of Nilakantha Somayaji with Yuktidipika and Laghuvivrti of Sankara. K.V.Sarma, Vishveshvaranand Visva Bandhu Institute of Sanskrit and Indological Studies, Punjab University, Hoshiarpur 1977. 6. Colebrook's translation of the Lilavati with Notes by Haran Chandra Banerji. The Book Company, Calcutta, 1927.

7. Mathematical Treasures – Lilavati of Bhaskara. Frank J.Swetz and Victor J.Katz. Loci. 2011.

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	>	✓

CO 2	\checkmark	\checkmark	\checkmark	✓	\checkmark
CO 3	\checkmark	\checkmark	~	✓	\checkmark

MINOR

Programme	B.Sc Applied N	Mathematics Honours								
Course Code	AMA1MN104									
Course Title	MATHEMAT	MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS								
Type of Course	Minor	Minor								
Semester	Ι									
Academic Level	nic Level 100 - 199									
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours						
	4	4	-	60						
Pre-requisites	Higher Second	ary Mathematics.								
Course Summary	covering fund quantifiers. It i and cardinality	This course explores mathematical logic, set theory, and combinatorics, covering fundamental ideas like propositions, logical equivalences, and quantifiers. It introduces set theory concepts such as sets, operations with sets, and cardinality. Additionally, it delves into functions and matrices, along with topics like permutations, combinations, and discrete probability in combinatorics.								

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse propositional logic and equivalences	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply set theory and operations	Ap	Ρ	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Implement functions, matrices, and combinatorics	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

CO4	Understand the Fundamental Counting Principle, permutations, combinations, and discrete probability.	U	С	
# - Fa	member (R), Understand (U), Apply ctual Knowledge(F) Conceptual Kn ledge (M)		. ,	

Detailed Syllabus:

Text: Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.

Module	Unit	Content	Hrs (48	Ext. Marks
			+12)	(70)
Ι		Mathematical Logic		
	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).	15	Min. 15
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)		
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		

II	S	et Theory		
	7 2.1 The Concept of a (Example 2.6 is option	Set - up to and including example 2.7 nal).		
	-	et - finite and infinite sets (Topics from doxes onwards are optional).	12	Mir 15
	9 2.2 Operations with So 2.21.	ets – up to and including example		
	-	Sets – Cartesian product (Fuzzy sets, erations on fuzzy sets are optional).		
	11 2.4 The Cardinality of subsets are optional).	of a Set (Theorem 2.2 and Algorithm		
III	Functio	ns and Matrices		
	12 3.1. The Concept of Free example	unctions - up to and including		
	3.2		10	Min

	12	3.1. The Concept of Functions - up to and including example3.2	10	Min.
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15
	14	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).		
	15	3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).		
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV		Combinatorics and Discrete Probability		

L			ote: 1) Optional topics are exempted for end semester xamination. 2) Proofs of all the results are also exempted]
3.	Dise	crete N	Aathematics, Gary Chartrand, Ping Zhang, Waveland Press (20	11).	
			2011).	_ ~ ~ ~ ~ ~	00 -
2.			Mathematics with Applications(4/e), Susanna S Epp, Brooks	/ Cole	Cengage
1.	Dise (200		Mathematics and Its Applications (7/e), Kenneth H. Rosen, M	cGraw	-Hill, NY
Refere	nces	:			
			Distributions, Correlation and Regression, Bisection Method, Method, Gauss-Jordan Method.		
			integration. Relations and Digraphs, Conditional Probability, 2 theorem of Probability, Dependent and Independent Events, P	Multipl	
	F	1. I	Basic calculus concepts such as limits, continuity, differentiation	on and	
V			Open Ended	12	
	F	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		
			(Examples 6.45 and 6.47 are optional)		
	-	21	6.8 Discrete Probability- up to and including example 6.49		
	-	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)		
		17	Fibonacci numbers revisited are optional)	11	
	of theorem 6.4 is optional) 19 6.2 Permutations - Cyclic permutations (Theorem				Min. 15
	-	18	6.2 Permutations - up to and including example 6.13 (Proof		
		17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		

for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels: Assessment Rubrics:

Level	Correlation	۵
-	Nil	
1	Slightly / Low	
2	Moderate / Medium	
3	Substantial / High	

Assignment/ Seminar I Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	>	✓
CO 2	\checkmark	\checkmark	~	√	✓
CO 3	\checkmark	\checkmark	\checkmark	✓	✓

Programme	B.Sc Applied Mathematics Honours				
Course Code	AMA2MN104				
Course Title	GRAPH THE	ORY AND AUTOMATA			
Type of Course	Minor				
Semester	II				
Academic Level	100 - 199				
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours	
	4	4	-	60	
Pre-requisites	Higher Second	ary Mathematics			
Course Summary	This course introduces students to Graph Theory and Automata, covering topics such as graphs, adjacency matrices, and isomorphic graphs in Module I. In Module II, it explores Eulerian and Hamiltonian graphs, including paths, cycles, and connected graphs. Module III focuses on Planar Graphs, Graph Coloring, Trees, and Spanning Trees. Finally, Module IV delves into Automata, covering concepts like formal languages, grammars, and finite state automata.				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Remember the definitions and fundamental properties of graphs, including simple graphs, adjacency and incidence, degree of a vertex, adjacency matrix, subgraphs, complete graphs, cycle and wheel graphs, bipartite graphs, complete bipartite graphs, weighted graphs, and isomorphic graphs.	R	F	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

CO2	Apply Algorithms to Eulerian and Hamiltonian Graphs	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	 Analyze the structure of planar graphs and trees, identifying their components and understanding their interrelationships. 	An	Ρ	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO4	Apply graph coloring techniques to determine chromatic numbers and utilize Kruskal's Algorithm to find minimum spanning trees in various graphs.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO5	Explore Formal Languages and Finite State Automata	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus:

Text: Discrete Mathematics with Applications, Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.					
Module			Hrs	Ext.	
			(48	Marks	
	Unit	Content	+12)	(70)	

Ι		Graphs		
1		Graphs		
	1	8.1 Graphs - Graph, Simple Graph (Example 8.3 is optional).		
	2	14	Min. 15	
	3	8.1 Graphs – Subgraph of a Graph.		
	4	8.1 Graphs - Complete Graph, Cycle and Wheel Graphs (Fibonacci and Paraffins, Lucas and Cycloparaffins are optional).		
	5	8.1 Graphs - Bipartite graph, Complete Bipartite Graph, Weighted Graph (Graphs and Telecommunications, Graphs and Local Area Networks and A Generalised Handshake Problem are optional).		
	6	8.3 Isomorphic Graphs.		
II		Eulerian and Hamiltonian graphs		
	7	 8.4 Paths, Cycles and Circuits – Path, Independent Subsets of the Vertex set, Cycle and Circuit (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional). 	10	Min. 15
	8	8.4 Paths, Cycles and Circuits – Connected Graphs (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).		
	9	8.5 Eulerian and Hamiltonian graphs- Eulerian Graph (Proof of theorem 8.7, example 8.26, Algorithm Eulerian graph, example 8.27, Algorithm Eulerian circuit, proof of theorem 8.8, example 8.31).		

	10	8.5 Eulerian and Hamiltonian graphs- Hamiltonian Graph (Knight's tour problem, example 8.34, Travelling Salesperson Problem, Example 8.35 are optional)		
III		Planar Graphs and Trees		
	11	8.6 Planar Graphs- Planar Graph (Proofs of theorems 8.11 and 8.12 are optional).		
	12			
		8.6 Planar Graphs- Degree of a Rregion, Homeomorphic Graphs.	11	Min. 15
	13			
		8.7 Graph Coloring- Graph Coloring, Chromatic Number, The Four-Color Problem (Example 8.27 is optional).		
	14			
		9.1 Trees- Trees (Proof of theorem 9.1 and 9.2 are optional).		
	15	9.2 Spanning Trees - Spanning Trees, Kruskal's Algorithm for a Spanning Tree.		
IV		Automata		
	16			
		2.1 The Concept of Sets – Alphabet, Length of a Word, Language, Concatenation.		
	17	11.1 Formal Languages - Equality of Words, Concatenation of Languages (Examples 11.2, 11.3, 11.5 and Proof of Theorem 11.1 are optional).	13	Min. 15
	18	11.1 Formal Languages – Kleene Closure.		
	19	11.2 Grammars – Grammars, Phase Structure Grammar.		
ļ	20	11.2 Grammars – Derivation and Language.		r
	21	11.3 Finite State Automata – up to and including Example 11.30 (Example 11.27 is optional).		

	22	11.3 Finite State Automata – Equivalent Finite State Automata up to and including example 11.35.				
V		Open Ended Module	12			
	Computer representation of graphs, minimal spanning trees, rooted trees, Digraphs and Finite state machines					
Reference	es:					
1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).						
2. Discrete Mathematics with Applications (4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).						
3. A First Look at Graph Theory, John Clark and Allan Holton, Allied Publishers (1991).						

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	1	1	0	3	0	0
CO 2	2	1	2	0	1	1	2	0	0
CO 3	2	1	2	0	1	1	3	0	0
CO4	2	1	2	1	1	2	2	0	0

Mapping of COs with PSOs and POs :

Correlation Levels: Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	\checkmark	√	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	✓	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	✓	\checkmark

Programme	B. Sc. Applied	B. Sc. Applied Mathematics Honours				
Course Code	AMA3MN204					
Course Title	BOOLEAN A	LGEBRA AND SYSTEM (OF EQUATION	NS		
Type of Course	Minor					
Semester	III					
Academic Level	200-299					
Course Details	Credit Lecture/Tutorial Practical Total Hour per week per week					
	4	4	-	60		
Pre-requisites	AMA1MN203	AMA1MN203 and AMA2MN203				
Course Summary	This course comprises four main modules: Lattice, Boolean Algebra, System of Equations, and Eigenvalue and Eigenvectors. Module I introduce concepts like ordered sets and lattices, while Module II explores Boolean Algebra and its applications. Module III covers linear systems of equations, including Gauss elimination and determinants. Finally, Module IV delves into Eigenvalue and Eigenvectors, offering insights into matrix properties and applications.					

Course Outcome

-	Course Outcome			
CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse Lattices and Boolean Algebra	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply Matrix Operations and Linear Systems	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

CO3	Investigate Eigenvalue and Eigenvector Problems	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacogni Knowledge (M)				

Textboo	1.	Theory and Problems of Discrete mathematics (3/e), S	Seymour Lip	schutz.
k		Lipson, Schaum's Outline Series.	2F	,
	2.	Advanced Engineering Mathematics (10/e), Erwin Kr	eyzsig, Wile	y India.
Module	Uni t	Hrs (48	Ext. Marks	
			+12)	(70)
Ι		Lattice (Text 1)	12	Min 15
	1	14.2 Ordered set		
	2	14.3 Hasse diagrams of partially ordered sets		
	3	14.5 Supremum and Infimum		
	4	14.8 Lattices		
	5	14.9 Bounded lattices, 14.10 Distributive lattices		
	6	14.11 Complements, Complemented lattices		
II		Boolean Algebra (Text 1)	10	Min 15
	7	15.2 Basic definitions		
	8	15.3 Duality		
	9	15.4 Basic theorems		

I	[I I
	10	15.5 Boolean algebra as lattices		
	11	15.8 Sum and Product form for Boolean algebras		
	12	15.8 Sum and Product form for Boolean algebras - Complete Sum and Product forms		
III		System of Equations (Text 2)	14	Min 15
	13	7.1 Matrices, Vectors: Addition and Scalar Multiplication		
	14	7.2 Matrix Multiplication (Example 13 is optional)		
	15	7.3 Linear System of Equations- Gauss Elimination		
	16	7.4 Linear Independence- Rank of a matrix- Vector Space (Proof Theorem 3 is optional)		
	17	7.5 Solutions of Linear Systems- Existence, Uniqueness (Proof of Theorem 1, Theorem 2 and Theorem 4 are optional)		
IV		Eigen Value and Eigen Vectors (Text 2)	12	Min 15
	18	7.6 Second and Third Order Determinants- up to and including Example 1		
	19	7.6 Second and Third Order Determinants- Third order determinants		
	20	7.7 Determinants- Cramer's Rule (Proof of Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)		
	21	7.8 Inverse of a Matrix- Gauss- Jordan Elimination (Proof Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)		
	22	8.1 The Matrix Eigenvalue Problem- Determining Eigenvalues and Eigenvectors (Proof of Theorem 1 and Theorem 2 are optional)		

V	Open Ended Module	12					
	Relation on a set, Equivalence relation and partition, Isomorphic ordered sets, Wellordered sets, Representation theorem of Boolean algebra, Logic gates, Symmetric, Skew-symmetric and Orthogonal matrices, Linear Transformation.						
Reference	es:						
1. Ho	Howard Anton & Chris Rorres, Elementary Linear Algebra: Application (11/e) : Wiley						
2. Ro Mi_in							
Harcourt	Publishing Company (2009)						
3. The	Thomas Koshy - Discrete Mathematics with Applications-Academic Press (2003)						
4. Ge Corporati	orge Gratzer, Lattice theory: First concepts and distributive lattices. on (2009)	Courie	r				

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	1	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels: Assessment Rubrics:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assignment/ Seminar Internal Exam Viva Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	✓	✓	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	✓	\checkmark

Programme	B.Sc. Applied Ma	athematics Honours				
Course Code	AMA1MN101					
Course Title	COMMERCIAL	ARITHMETIC				
Course Type	Minor					
Semester	1					
Academic Level	100-199					
Course Details	Credit	Lecture/Tutorial per	Practical/Practicum	Total Hours		
		week	per week			
	4	4	0	4		
Pre- requisites	Basic arithmetic					
Course Summary	The course covers basic concepts of Sets, Matrices and their operations,					
	Relations and Functions. This course also covers the methods of solving					
	Linear Equations	Linear Equations and basic concepts of Arithmetic and Geometric				
	progressions.					

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive	Knowledge	Evaluation			
		Level*	Category	Tools used			
CO 1	Understand numerical equations, matrix, progression, financial mathematics.	U	F	Internal Exam/Assignment /Seminar/Viva/En d Sem Exam			
CO 2	The student will be able to understand basic concepts in Mathematics and will be able to appreciate wide applications in business.	U	F	Internal Exam/Assignment /Seminar/Viva/En d Sem Exam			
#-Fa	*-Remember®, Understand (U), Apply (Ap), Evaluate(E), Create(C) #-Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge(P), Metacognitive Knowledge(M)						

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive Level*	Knowledge Category	Evaluation Tools used
CO 1	Understand numerical equations, matrix, progression, financial mathematics.	U	F	Internal Exam/Assignment /Seminar/Viva/En d Sem Exam
CO 2	The student will be able to understand basic concepts in Mathematics and will be able to appreciate wide applications in business.	U	F	Internal Exam/Assignment /Seminar/Viva/En d Sem Exam

*-Remember®, Understand (U), Apply (Ap), Evaluate(E), Create(C) #-Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge(P), Metacognitive Knowledge(M)

Module	Unit	Content	Hours	Marks
				Ext:70
Ι	1	Sets and Set Operation: Venn Diagrams-		
		Theorems on number of Elements in a set.		
	2	Relations, types of relation and equivalence	15	
		relation. Functions - Type of functions.		
	3	Elements of Co- ordinate system.		
Π	II 4 Progressions: Arithmetic progressions - Finding the "n"th term of an AP and also sum to ,,n"terms of an AP-Insertion of Arithmetic means in given terms of AP and representation of AP- Geometric progression: Finding n"th term of GP. Insertion of GMs in given GP and also representation of GP		10	
III	5	Matrices -Definition, Order of Matrices, Types of Matrices, Operations on Matrices– addition, subtraction, Scalar multiplication and Matrix multiplication -Transpose-Determinant- Inverse of square matrices (not more than 3rd order) - Solving system of simultaneous liner equations.	15	
IV	IV6Solving system of simultaneous liner equations.IV6Theory of Equations: Meaning - Types of equations – Simple linear and simultaneous equations (only two variables) eliminations and substitution method only. Quadratic equation factorization and formula method (ax² + bx + c = 0 form only)		8	
V-Open I	Ended	Problems on business application.	12	
Re	ference	25:		
1.	Goldste	in, L.J., Schneider, D.I., & Siegal, M.J. (2010). Finite	e mathema	atics and
		tions. New Jersey: Pearson Publication.		
2.		Arte & R V Prabhakar - A Text Book of BusinessMa	athematics	

- **3.** Dr Jagbir Singh, Business Mathematics- Maharshi Dayanand University Press 2021
- **4.** Sundaresan and Jayaseelan An Introduction to Business Mathematics and Statistical Methods.

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module. Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	-	1	-	2	-	2
CO 2	3	2	2	3	3	-	1	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

		Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
C	01	\checkmark	✓	~		\checkmark
С	O 2	\checkmark		\checkmark	✓	\checkmark

Programme	B.Sc. Applied Ma	B.Sc. Applied Mathematics Honours					
Course Code	AMA2MN102						
Course Title	BUSINESS MAT	THEMATICS					
Course Type	Minor						
Semester	2	2					
Academic Level	100-199	100-199					
Course Details	Credit	Lecture/Tutorial per	Practical/Practicum	Total Hours			
		week	per week				
	4	4	0	4			
Pre- requisites	Basic arithmetic,	Basic arithmetic, Basic Knowledge about Interest, Set theory and Calculus					
Course Summary	The course cover	The course covers concepts of Lines, Interest and Time values, Probability,					
	and also basic co	ncepts of Differential c	calculus.				

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive	Knowledge	Evaluatio					
		Level*	Category	n Tools					
				used					
CO 1	Student will able to understand difference between mathematical equations and inequalities and their solutions.	U	Р	Internal Exam/Assign ment/Seminar /Viva/End					
				Sem Exam					
CO 2	Student will be able to appreciate uses of Mathematical models in real life situations	Ap	Р	Internal Exam/Assign ment/Seminar /Viva/End					
				Sem Exam					
CO 3	To be able to calculate present worth of money spent and annuity in real life situations.	Ap	С	Internal Exam/Assign ment/Seminar /Viva/End					
				Sem Exam					
*-Re	*-Remember®, Understand (U), Apply (Ap), Evaluate(E), Create(C)								
#-Fa	ctual Knowledge (F), Conceptual	l Knowledge	e (C), Procedu	ıral					
Knov	vledge(P), Metacognitive Knowle	edge(M)							

Module	Unit	Content	Hours	Marks Ext:70
I	1	Linear Models: Linear equations and inequalities in one variable, Linear functions, slope and equations of a line	8	

		1	I	
II	2	Interest and Time value: Concept of interestTypes	12	
		of interest: Simple interest and compound interest –		
		nominal, real and effective rate of interest. Future		
		value and Present Value; Annuity and Perpetuity.		
		Computing future and present values of annuity		
		(regular and immediate) - multi and growing period		
		perpetuity. Compound annual growth rate-		
		computation of Equated Monthly		
		Instalments (EMI).		
III	3	Theory of Probability: Permutation and	13	
	•	Combination- Probability: Concept and		
		definitions- Approaches to probability- Theorems		
		of probability- Addition Theorem, Multiplication		
		Theorem- Conditional probability- Inverse		
		probability- Baye's Theorem- Random variable-		
		Mathematical expectation.		
IV	4	Basic Calculus (excluding trigonometric -	15	
	-	functions): :ulus Limits- Differentiat		
		Methods of - Second order		
		differentiation tima and Minima.		
		derivative-		
V-Open I	Ended	Linear mathematics models, constructing	12	
		mathematical models. Application to commerce		
		and Economics- Revenue Function- Cost		
		function- Profit function- Elasticity of demand-		
		Breakeven point. Problems on business		
		application.		
Reference	es:			
1.	Goldste	in, L.J., Schneider, D.I., & Siegal, M.J. (2010). Fin	ite mather	natics and
		tions. New Jersey: Pearson Publication.		
2.	Busines	ss Mathematics with Calculus - Daniel Ashlock and A	ndrew Mo	Eachern

3. G K Ranganath& T V Narasimha Rao. *Business Mathematics*. New Delhi: Himalaya Publishing House.

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7

CO 1	3	2	2	-	2	-	2	-	1
CO 2	2	1	3	1	3	-	3	1	3
CO 3	3	2	2	3	3	_	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

		Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CC	D 1	\checkmark	\checkmark	\checkmark	\checkmark	~
CC) 2	\checkmark		\checkmark	✓	\checkmark
СС) 3	\checkmark	\checkmark	~	~	✓

Programme	B.Sc. Applied Ma	B.Sc. Applied Mathematics Honours						
Course Code	AMA3MN201							
Course Title	MANAGEMEN	MANAGEMENT SCIENCE						
Course Type	Minor							
Semester	Semester 3							
Academic Level	200-299							
Course Details	Credit	Lecture/Tutorial per week	Practical/Practicum per week	Total Hours				
	4	4	0	4				
Pre- requisites	Pre- requisites Basic arithmetic, Basic Knowledge about Matrices and Calculus							
Course Summary	The course covers concepts of Linear Programming Problem, Transportation problem, Assignment problem and also basic concepts of Integral calculus.							

COURSE OUTCOME(CO)

CO	CO Statement	Cognitive	Knowledge	Evaluatio			
		Level*	Category	n Tools			
				used			
CO	Student will able to understand			Internal			
1	commercial arithmetic and calculus and its applications.	U	Р	Exam/Assign ment/Seminar /Viva/End			
				Sem Exam			
CO	Students will understand common			Internal			
2	techniques used in Operation Management Decisions	U	F	Exam/Assign ment/Seminar /Viva/End			
				Sem Exam			
CO 3	Students will understand calculus and its applications	U	Р	Internal Exam/Assign ment/Seminar /Viva/End			
				Sem Exam			
*-Remember®, Understand (U), Apply (Ap), Evaluate(E), Create(C) #-Factual Knowledge (F), Conceptual Knowledge (C), Procedural							

Knowledge(P), Metacognitive Knowledge(M)

Module	Unit	Content	Hours	Marks
				Ext:70

Ι	1	Linear Programming: Problems Definition- Linear Programming Problem- Formulation- Solution by Graphical method- simplex method- minimization and maximization problems.	15				
II	II 2 Transportation Problems: Different Initial Allocation Methods- Move towards Optimality- MODI Method of Solving Transportation Problems.						
III 3 Assignment Problems- Solutions- Variation Assignment Problems- Travelling Sales-ma problem.			8				
IV	4	Integral Calculus (excluding trigonometric	13				
		 functions) : Integration as antiderivative, Integral and constant of integration. n of different functions- Integration by substitution -Definite integrals: Evaluation of ntegrals, Integration by substitution. 					
V-Open F	Inded	Problems on business application.	12				
2. (Busines Goldstei	s Mathematics with Calculus - Daniel Ashlock and A in, L.J., Schneider, D.I., & Siegal, M.J. (2010). Finit					
App	Applications. New Jersey: Pearson Publication.						

3. J.K. Sharma, Operation Research, Theory and Applications Macmillan India Limited.

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	2	1	3	-	2
CO 2	2	2	3	2	2	1	2	2	3
CO 3	3	2	2	1	2	-	3	-	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	~	~	✓
CO 2	\checkmark	\checkmark	\checkmark	✓	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark